R/daa_annotated_results_df.R

#' Differentially Abundant Analysis Results with Annotation
#'
#' This is a result dataset after processing 'kegg_abundance' through
#' the 'pathway_daa' with the LinDA method and further annotation with 'pathway_annotation'.
#'
#' @format A data frame with 10 variables:
#' \describe{
#'   \item{adj_method}{Method used for adjusting p-values.}
#'   \item{feature}{Feature being tested.}
#'   \item{group1}{One group in the comparison.}
#'   \item{group2}{The other group in the comparison.}
#'   \item{method}{Statistical test used.}
#'   \item{p_adjust}{Adjusted p-value.}
#'   \item{p_values}{P-values from the statistical test.}
#'   \item{pathway_class}{Class of the pathway.}
#'   \item{pathway_description}{Description of the pathway.}
#'   \item{pathway_map}{Map of the pathway.}
#'   \item{pathway_name}{Name of the pathway.}
#' }
#' @source From ggpicrust2 package demonstration.
#' @references Douglas GM, Maffei VJ, Zaneveld J, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020.
"daa_annotated_results_df"

Try the ggpicrust2 package in your browser

Any scripts or data that you put into this service are public.

ggpicrust2 documentation built on Nov. 8, 2023, 5:08 p.m.