Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----ggpicrust2(), eval = FALSE-----------------------------------------------
# # If you want to analyze the abundance of KEGG pathways instead of KO within the pathway, please set `ko_to_kegg` to TRUE.
# # KEGG pathways typically have more descriptive explanations.
#
# library(readr)
# library(ggpicrust2)
# library(tibble)
# library(tidyverse)
# library(ggprism)
# library(patchwork)
#
# # Load necessary data: abundance data and metadata
# abundance_file <- "path/to/your/abundance_file.tsv"
# metadata <- read_delim(
# "path/to/your/metadata.txt",
# delim = "\t",
# escape_double = FALSE,
# trim_ws = TRUE
# )
#
# # Run ggpicrust2 with input file path
# results_file_input <- ggpicrust2(file = abundance_file,
# metadata = metadata,
# group = "your_group_column", # For example dataset, group = "Environment"
# pathway = "KO",
# daa_method = "LinDA",
# ko_to_kegg = TRUE,
# order = "pathway_class",
# p_values_bar = TRUE,
# x_lab = "pathway_name")
#
# # Run ggpicrust2 with imported data.frame
# abundance_data <- read_delim(abundance_file, delim = "\t", col_names = TRUE, trim_ws = TRUE)
#
# # Run ggpicrust2 with input data
# results_data_input <- ggpicrust2(data = abundance_data,
# metadata = metadata,
# group = "your_group_column", # For example dataset, group = "Environment"
# pathway = "KO",
# daa_method = "LinDA",
# ko_to_kegg = TRUE,
# order = "pathway_class",
# p_values_bar = TRUE,
# x_lab = "pathway_name")
#
# # Access the plot and results dataframe for the first DA method
# example_plot <- results_file_input[[1]]$plot
# example_results <- results_file_input[[1]]$results
#
# # Use the example data in ggpicrust2 package
# data(ko_abundance)
# data(metadata)
# results_file_input <- ggpicrust2(data = ko_abundance,
# metadata = metadata,
# group = "Environment",
# pathway = "KO",
# daa_method = "LinDA",
# ko_to_kegg = TRUE,
# order = "pathway_class",
# p_values_bar = TRUE,
# x_lab = "pathway_name")
#
# # Analyze the EC or MetaCyc pathway
# data(metacyc_abundance)
# results_file_input <- ggpicrust2(data = metacyc_abundance,
# metadata = metadata,
# group = "Environment",
# pathway = "MetaCyc",
# daa_method = "LinDA",
# ko_to_kegg = FALSE,
# order = "group",
# p_values_bar = TRUE,
# x_lab = "description")
# results_file_input[[1]]$plot
# results_file_input[[1]]$results
## ----alternative, eval = FALSE------------------------------------------------
# library(readr)
# library(ggpicrust2)
# library(tibble)
# library(tidyverse)
# library(ggprism)
# library(patchwork)
#
# # If you want to analyze KEGG pathway abundance instead of KO within the pathway, turn ko_to_kegg to TRUE.
# # KEGG pathways typically have more explainable descriptions.
#
# # Load metadata as a tibble
# # data(metadata)
# metadata <- read_delim("path/to/your/metadata.txt", delim = "\t", escape_double = FALSE, trim_ws = TRUE)
#
# # Load KEGG pathway abundance
# # data(kegg_abundance)
# kegg_abundance <- ko2kegg_abundance("path/to/your/pred_metagenome_unstrat.tsv")
#
# # Perform pathway differential abundance analysis (DAA) using ALDEx2 method
# # Please change group to "your_group_column" if you are not using example dataset
# daa_results_df <- pathway_daa(abundance = kegg_abundance, metadata = metadata, group = "Environment", daa_method = "ALDEx2", select = NULL, reference = NULL)
#
# # Filter results for ALDEx2_Welch's t test method
# # Please check the unique(daa_results_df$method) and choose one
# daa_sub_method_results_df <- daa_results_df[daa_results_df$method == "ALDEx2_Wilcoxon rank test", ]
#
# # Annotate pathway results using KO to KEGG conversion
# daa_annotated_sub_method_results_df <- pathway_annotation(pathway = "KO", daa_results_df = daa_sub_method_results_df, ko_to_kegg = TRUE)
#
# # Generate pathway error bar plot
# # Please change Group to metadata$your_group_column if you are not using example dataset
# p <- pathway_errorbar(abundance = kegg_abundance, daa_results_df = daa_annotated_sub_method_results_df, Group = metadata$Environment, p_values_threshold = 0.05, order = "pathway_class", select = NULL, ko_to_kegg = TRUE, p_value_bar = TRUE, colors = NULL, x_lab = "pathway_name")
#
# # If you want to analyze EC, MetaCyc, and KO without conversions, turn ko_to_kegg to FALSE.
#
# # Load metadata as a tibble
# # data(metadata)
# metadata <- read_delim("path/to/your/metadata.txt", delim = "\t", escape_double = FALSE, trim_ws = TRUE)
#
# # Load KO abundance as a data.frame
# # data(ko_abundance)
# ko_abundance <- read.delim("path/to/your/pred_metagenome_unstrat.tsv")
#
# # Perform pathway DAA using ALDEx2 method
# # Please change column_to_rownames() to the feature column if you are not using example dataset
# # Please change group to "your_group_column" if you are not using example dataset
# daa_results_df <- pathway_daa(abundance = ko_abundance %>% column_to_rownames("#NAME"), metadata = metadata, group = "Environment", daa_method = "ALDEx2", select = NULL, reference = NULL)
#
# # Filter results for ALDEx2_Kruskal-Wallace test method
# daa_sub_method_results_df <- daa_results_df[daa_results_df$method == "ALDEx2_Wilcoxon rank test", ]
#
# # Annotate pathway results without KO to KEGG conversion
# daa_annotated_sub_method_results_df <- pathway_annotation(pathway = "KO", daa_results_df = daa_sub_method_results_df, ko_to_kegg = FALSE)
#
# # Generate pathway error bar plot
# # Please change column_to_rownames() to the feature column
# # Please change Group to metadata$your_group_column if you are not using example dataset
# p <- pathway_errorbar(abundance = ko_abundance %>% column_to_rownames("#NAME"), daa_results_df = daa_annotated_sub_method_results_df, Group = metadata$Environment, p_values_threshold = 0.05, order = "group",
# select = daa_annotated_sub_method_results_df %>% arrange(p_adjust) %>% slice(1:20) %>% dplyr::select(feature) %>% pull(),
# ko_to_kegg = FALSE,
# p_value_bar = TRUE,
# colors = NULL,
# x_lab = "description")
#
# # Workflow for MetaCyc Pathway and EC
#
# # Load MetaCyc pathway abundance and metadata
# data("metacyc_abundance")
# data("metadata")
#
# # Perform pathway DAA using LinDA method
# # Please change column_to_rownames() to the feature column if you are not using example dataset
# # Please change group to "your_group_column" if you are not using example dataset
# metacyc_daa_results_df <- pathway_daa(abundance = metacyc_abundance %>% column_to_rownames("pathway"), metadata = metadata, group = "Environment", daa_method = "LinDA")
#
# # Annotate MetaCyc pathway results without KO to KEGG conversion
# metacyc_daa_annotated_results_df <- pathway_annotation(pathway = "MetaCyc", daa_results_df = daa_results_df, ko_to_kegg = FALSE)
#
# # Generate pathway error bar plot
# # Please change column_to_rownames() to the feature column
# # Please change Group to metadata$your_group_column if you are not using example dataset
# pathway_errorbar(abundance = metacyc_abundance %>% column_to_rownames("pathway"), daa_results_df = metacyc_daa_annotated_results_df, Group = metadata$Environment, ko_to_kegg = FALSE, p_values_threshold = 0.05, order = "group", select = NULL, p_value_bar = TRUE, colors = NULL, x_lab = "description")
#
# # Generate pathway heatmap
# # Please change column_to_rownames() to the feature column if you are not using example dataset
# # Please change group to "your_group_column" if you are not using example dataset
# feature_with_p_0.05 <- metacyc_daa_results_df %>% filter(p_adjust < 0.05)
# pathway_heatmap(abundance = metacyc_abundance %>% filter(pathway %in% feature_with_p_0.05$feature) %>% column_to_rownames("pathway"), metadata = metadata, group = "Environment")
#
# # Generate pathway PCA plot
# # Please change column_to_rownames() to the feature column if you are not using example dataset
# # Please change group to "your_group_column" if you are not using example dataset
# pathway_pca(abundance = metacyc_abundance %>% column_to_rownames("pathway"), metadata = metadata, group = "Environment")
#
# # Run pathway DAA for multiple methods
# # Please change column_to_rownames() to the feature column if you are not using example dataset
# # Please change group to "your_group_column" if you are not using example dataset
# methods <- c("ALDEx2", "DESeq2", "edgeR")
# daa_results_list <- lapply(methods, function(method) {
# pathway_daa(abundance = metacyc_abundance %>% column_to_rownames("pathway"), metadata = metadata, group = "Environment", daa_method = method)
# })
#
# # Compare results across different methods
# comparison_results <- compare_daa_results(daa_results_list = daa_results_list, method_names = c("ALDEx2_Welch's t test", "ALDEx2_Wilcoxon rank test", "DESeq2", "edgeR"))
#
## ----ko2kegg_abundance sample,echo = TRUE,eval=FALSE--------------------------
# # Sample usage of the ko2kegg_abundance function
#
# library(ggpicrust2)
#
# # Assume that the KO abundance table is stored in a file named "ko_abundance.tsv"
# ko_abundance_file <- "ko_abundance.tsv"
#
# # Convert KO abundance to KEGG pathway abundance
# kegg_abundance <- ko2kegg_abundance(file = ko_abundance_file)
#
# # Alternatively, if the KO abundance data is already loaded as a data frame named "ko_abundance"
# data("ko_abundance")
# kegg_abundance <- ko2kegg_abundance(data = ko_abundance)
#
# # The resulting kegg_abundance data frame can now be used for further analysis and visualization.
#
## ----pathway_daa sample,echo = TRUE,eval=FALSE--------------------------------
# # The abundance table is recommended to be a data.frame rather than a tibble.
# # The abundance table should have feature names or pathway names as row names, and sample names as column names.
# # You can use the output of ko2kegg_abundance
# ko_abundance_file <- "path/to/your/pred_metagenome_unstrat.tsv"
# kegg_abundance <- ko2kegg_abundance(ko_abundance_file) # Or use data(kegg_abundance)
#
# metadata <- read_delim("path/to/your/metadata.txt", delim = "\t", escape_double = FALSE, trim_ws = TRUE)
#
# # The default DAA method is "ALDEx2"
# # Please change group to "your_group_column" if you are not using example dataset
# daa_results_df <- pathway_daa(abundance = kegg_abundance, metadata = metadata, group = "Environment", daa_method = "linDA", select = NULL, p.adjust = "BH", reference = NULL)
#
# # If you have more than 3 group levels and want to use the LinDA, limma voom, or Maaslin2 methods, you should provide a reference.
# metadata <- read_delim("path/to/your/metadata.txt", delim = "\t", escape_double = FALSE, trim_ws = TRUE)
#
# # Please change group to "your_group_column" if you are not using example dataset
# daa_results_df <- pathway_daa(abundance = kegg_abundance, metadata = metadata, group = "Group", daa_method = "LinDA", select = NULL, p.adjust = "BH", reference = "Harvard BRI")
#
# # Other example
# data("metacyc_abundance")
# data("metadata")
# metacyc_daa_results_df <- pathway_daa(abundance = metacyc_abundance %>% column_to_rownames("pathway"), metadata = metadata, group = "Environment", daa_method = "LinDA", select = NULL, p.adjust = "BH", reference = NULL)
## ----compare_daa_results sample,echo = TRUE,eval=FALSE------------------------
# library(ggpicrust2)
# library(tidyverse)
# data("metacyc_abundance")
# data("metadata")
#
# # Run pathway_daa function for multiple methods
# # Please change column_to_rownames() to the feature column if you are not using example dataset
# # Please change group to "your_group_column" if you are not using example dataset
# methods <- c("ALDEx2", "DESeq2", "edgeR")
# daa_results_list <- lapply(methods, function(method) {
# pathway_daa(abundance = metacyc_abundance %>% column_to_rownames("pathway"), metadata = metadata, group = "Environment", daa_method = method)
# })
#
# method_names <- c("ALDEx2_Welch's t test","ALDEx2_Wilcoxon rank test","DESeq2", "edgeR")
# # Compare results across different methods
# comparison_results <- compare_daa_results(daa_results_list = daa_results_list, method_names = method_names)
## ----pathway_annotation sample,echo = TRUE,eval=FALSE-------------------------
#
# # Make sure to check if the features in `daa_results_df` correspond to the selected pathway
#
# # Annotate KEGG Pathway
# data("kegg_abundance")
# data("metadata")
# # Please change group to "your_group_column" if you are not using example dataset
# daa_results_df <- pathway_daa(abundance = kegg_abundance, metadata = metadata, group = "Environment", daa_method = "LinDA")
# daa_annotated_results_df <- pathway_annotation(pathway = "KO", daa_results_df = daa_results_df, ko_to_kegg = TRUE)
#
# # Annotate KO
# data("ko_abundance")
# data("metadata")
# # Please change column_to_rownames() to the feature column if you are not using example dataset
# # Please change group to "your_group_column" if you are not using example dataset
# daa_results_df <- pathway_daa(abundance = ko_abundance %>% column_to_rownames("#NAME"), metadata = metadata, group = "Environment", daa_method = "LinDA")
# daa_annotated_results_df <- pathway_annotation(pathway = "KO", daa_results_df = daa_results_df, ko_to_kegg = FALSE)
#
# # Annotate KEGG
# # daa_annotated_results_df <- pathway_annotation(pathway = "EC", daa_results_df = daa_results_df, ko_to_kegg = FALSE)
#
# # Annotate MetaCyc Pathway
# data("metacyc_abundance")
# data("metadata")
# # Please change column_to_rownames() to the feature column if you are not using example dataset
# # Please change group to "your_group_column" if you are not using example dataset
# metacyc_daa_results_df <- pathway_daa(abundance = metacyc_abundance %>% column_to_rownames("pathway"), metadata = metadata, group = "Environment", daa_method = "LinDA")
# metacyc_daa_annotated_results_df <- pathway_annotation(pathway = "MetaCyc", daa_results_df = metacyc_daa_results_df, ko_to_kegg = FALSE)
## ----pathway_errorbar sample,echo = TRUE,eval=FALSE---------------------------
# data("ko_abundance")
# data("metadata")
# kegg_abundance <- ko2kegg_abundance(data = ko_abundance) # Or use data(kegg_abundance)
# # Please change group to "your_group_column" if you are not using example dataset
# daa_results_df <- pathway_daa(kegg_abundance, metadata = metadata, group = "Environment", daa_method = "LinDA")
# daa_annotated_results_df <- pathway_annotation(pathway = "KO", daa_results_df = daa_results_df, ko_to_kegg = TRUE)
# # Please change Group to metadata$your_group_column if you are not using example dataset
# p <- pathway_errorbar(abundance = kegg_abundance,
# daa_results_df = daa_annotated_results_df,
# Group = metadata$Environment,
# ko_to_kegg = TRUE,
# p_values_threshold = 0.05,
# order = "pathway_class",
# select = NULL,
# p_value_bar = TRUE,
# colors = NULL,
# x_lab = "pathway_name")
#
# # If you want to analysis the EC. MetaCyc. KO without conversions.
# data("metacyc_abundance")
# data("metadata")
# metacyc_daa_results_df <- pathway_daa(abundance = metacyc_abundance %>% column_to_rownames("pathway"), metadata = metadata, group = "Environment", daa_method = "LinDA")
# metacyc_daa_annotated_results_df <- pathway_annotation(pathway = "MetaCyc", daa_results_df = metacyc_daa_results_df, ko_to_kegg = FALSE)
# p <- pathway_errorbar(abundance = metacyc_abundance %>% column_to_rownames("pathway"),
# daa_results_df = metacyc_daa_annotated_results_df,
# Group = metadata$Environment,
# ko_to_kegg = FALSE,
# p_values_threshold = 0.05,
# order = "group",
# select = NULL,
# p_value_bar = TRUE,
# colors = NULL,
# x_lab = "description")
## ----echo = TRUE,eval=FALSE---------------------------------------------------
# # Create example functional pathway abundance data
# abundance_example <- matrix(rnorm(30), nrow = 3, ncol = 10)
# colnames(abundance_example) <- paste0("Sample", 1:10)
# rownames(abundance_example) <- c("PathwayA", "PathwayB", "PathwayC")
#
# # Create example metadata
# # Please change your sample id's column name to sample_name
# metadata_example <- data.frame(sample_name = colnames(abundance_example),
# group = factor(rep(c("Control", "Treatment"), each = 5)))
#
# # Create a heatmap
# pathway_heatmap(abundance_example, metadata_example, "group")
## ----echo = TRUE,eval=FALSE---------------------------------------------------
# # Load the data
# data("metacyc_abundance")
#
# # Load the metadata
# data("metadata")
#
# # Perform differential abundance analysis
# metacyc_daa_results_df <- pathway_daa(
# abundance = metacyc_abundance %>% column_to_rownames("pathway"),
# metadata = metadata,
# group = "Environment",
# daa_method = "LinDA"
# )
#
# # Annotate the results
# annotated_metacyc_daa_results_df <- pathway_annotation(
# pathway = "MetaCyc",
# daa_results_df = metacyc_daa_results_df,
# ko_to_kegg = FALSE
# )
#
# # Filter features with p < 0.05
# feature_with_p_0.05 <- metacyc_daa_results_df %>%
# filter(p_adjust < 0.05)
#
# # Create the heatmap
# pathway_heatmap(
# abundance = metacyc_abundance %>%
# right_join(
# annotated_metacyc_daa_results_df %>% select(all_of(c("feature","description"))),
# by = c("pathway" = "feature")
# ) %>%
# filter(pathway %in% feature_with_p_0.05$feature) %>%
# select(-"pathway") %>%
# column_to_rownames("description"),
# metadata = metadata,
# group = "Environment"
# )
## ----echo = TRUE,eval=FALSE---------------------------------------------------
# # Create example functional pathway abundance data
# abundance_example <- matrix(rnorm(30), nrow = 3, ncol = 10)
# colnames(abundance_example) <- paste0("Sample", 1:10)
# rownames(kegg_abundance_example) <- c("PathwayA", "PathwayB", "PathwayC")
#
# # Create example metadata
# metadata_example <- data.frame(sample_name = colnames(kegg_abundance_example),
# group = factor(rep(c("Control", "Treatment"), each = 5)))
# # Perform PCA and create visualizations
# pathway_pca(abundance = abundance_example, metadata = metadata_example, "group")
## ----echo = TRUE,eval=FALSE---------------------------------------------------
# # Create example functional pathway abundance data
# data("metacyc_abundance")
# data("metadata")
#
# pathway_pca(abundance = metacyc_abundance %>% column_to_rownames("pathway"), metadata = metadata, group = "Environment")
## ----compare_metagenome_results sample,echo = TRUE,eval=FALSE-----------------
# library(ComplexHeatmap)
# set.seed(123)
# # First metagenome
# metagenome1 <- abs(matrix(rnorm(1000), nrow = 100, ncol = 10))
# rownames(metagenome1) <- paste0("KO", 1:100)
# colnames(metagenome1) <- paste0("sample", 1:10)
# # Second metagenome
# metagenome2 <- abs(matrix(rnorm(1000), nrow = 100, ncol = 10))
# rownames(metagenome2) <- paste0("KO", 1:100)
# colnames(metagenome2) <- paste0("sample", 1:10)
# # Put the metagenomes into a list
# metagenomes <- list(metagenome1, metagenome2)
# # Define names
# names <- c("metagenome1", "metagenome2")
# # Call the function
# results <- compare_metagenome_results(metagenomes, names)
# # Print the correlation matrix
# print(results$correlation$cor_matrix)
# # Print the p-value matrix
# print(results$correlation$p_matrix)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.