set.seed(2022)
If the natural ggplot2
equivalent to nodes is geom_point()
, then surely the
equivalent to edges must be geom_segment()
? Well, sort of, but there's a bit
more to it than that.
While nodes are the sensible, mature, and predictably geoms, edges are the edgy (sorry), younger cousins that pushes the boundaries. To put it bluntly:
On the ggraph savannah you definitely want to be an edge!
geom_edge_*()
familyWhile the introduction might feel a bit over-the-top it is entirely true. An
edge is an abstract concept denoting a relationship between two entities. A
straight line is simply just one of many ways this relationship can be
visualised. As we saw when discussing nodes
sometimes it is not drawn at all but impied using containment or position
(treemap, circle packing, and partition layouts), but more often it is shown
using a line of some sort. This use-case is handled by the large family of edge
geoms provided in ggraph
. Some of the edges are general while others are
dedicated to specific layouts. Let's creates some graphs for illustrative purposes
first:
library(ggraph) library(tidygraph) library(purrr) library(rlang) set_graph_style(plot_margin = margin(1,1,1,1)) hierarchy <- as_tbl_graph(hclust(dist(iris[, 1:4]))) |> mutate(Class = map_bfs_back_chr(node_is_root(), .f = function(node, path, ...) { if (leaf[node]) { as.character(iris$Species[as.integer(label[node])]) } else { species <- unique(unlist(path$result)) if (length(species) == 1) { species } else { NA_character_ } } })) hairball <- as_tbl_graph(highschool) |> mutate( year_pop = map_local(mode = 'in', .f = function(neighborhood, ...) { neighborhood %E>% pull(year) |> table() |> sort(decreasing = TRUE) }), pop_devel = map_chr(year_pop, function(pop) { if (length(pop) == 0 || length(unique(pop)) == 1) return('unchanged') switch(names(pop)[which.max(pop)], '1957' = 'decreased', '1958' = 'increased') }), popularity = map_dbl(year_pop, ~ .[1]) %|% 0 ) |> activate(edges) |> mutate(year = as.character(year))
While you don't have to use a straight line for edges it is certainly possible
and geom_edge_link()
is here to serve your needs:
ggraph(hairball, layout = 'stress') + geom_edge_link(aes(colour = year))
There's really not much more to it --- every edge is simply a straight line between the terminal nodes. Moving on...
Sometimes the graph is not simple, i.e. it has multiple edges between the same
nodes. Using links is a bad choice here because edges will overlap and the
viewer will be unable to discover parallel edges. geom_edge_fan()
got you
covered here. If there are no parallel edges it behaves like geom_edge_link()
and draws a straight line, but if parallel edges exists it will spread them out
as arcs with different curvature. Parallel edges will be sorted by
directionality prior to plotting so edges flowing in the same direction will be
plotted together:
ggraph(hairball, layout = 'stress') + geom_edge_fan(aes(colour = year))
An alternative to geom_edge_fan()
is geom_edge_parallel()
. It will draw
edges as straight lines but in the case of multi-edges it will offset each edge
a bit so they run parallel to each other. As with geom_edge_fan()
the edges
will be sorted by direction first. The offset is done at draw time and will thus
remain constant even during resizing:
ggraph(hairball, layout = 'stress') + geom_edge_parallel(aes(colour = year))
Loops cannot be shown with regular edges as they have no length. A dedicated
geom_edge_loop()
exists for these cases:
# let's make some of the student love themselves loopy_hairball <- hairball |> bind_edges(tibble::tibble(from = 1:5, to = 1:5, year = rep('1957', 5))) ggraph(loopy_hairball, layout = 'stress') + geom_edge_link(aes(colour = year), alpha = 0.25) + geom_edge_loop(aes(colour = year))
The direction, span, and strength of the loop can all be controlled, but in general loops will add a lot of visual clutter to your plot unless the graph is very simple.
This one is definitely strange, and I'm unsure of it's usefulness, but it is here
and it deserves an introduction. Consider the case where it is of interest to
see which types of edges dominates certain areas of the graph. You can colour
the edges, but edges can tend to get overplotted, thus reducing readability.
geom_edge_density()
lets you add a shading to your plot based on the density
of edges in a certain area:
ggraph(hairball, layout = 'stress') + geom_edge_density(aes(fill = year)) + geom_edge_link(alpha = 0.25)
While some insists that curved edges should be used in standard "hairball"
graph visualisations it really is a poor choice, as it increases overplotting
and decreases interpretability for virtually no gain (unless complexity is
your thing). That doesn't mean arcs have no use in graph visualizations. Linear
and circular layouts can benefit greatly from them and geom_edge_arc()
is
provided precisely for this scenario:
ggraph(hairball, layout = 'linear') + geom_edge_arc(aes(colour = year))
Arcs behave differently in circular layouts as they will always bend towards
the center no matter the direction of the edge (the same thing can be achieved
in a linear layout by setting fold = TRUE
).
ggraph(hairball, layout = 'linear', circular = TRUE) + geom_edge_arc(aes(colour = year)) + coord_fixed()
Edge bundling is a technique to reduce clutter in a network visualization by bundling edges that flows in the same direction. There are various ways of doing this, many with heavy computational cost and the potential to mislead. The technique were initially confined to connections between nodes with a hierarchical structure but has been expanded to general graphs. ggraph provides 3 different bundling geoms with various up- and downsides.
This is perhaps the most classic. It treats the edges as an array of points with the propensity to attract each other if edges are parallel. It suffers from bad performance (though the edge bundling geoms uses memoisation to avoid recomputations) and can also be misleading as it doesn't use the underlying topology of the graph to determine if edges should be bundled, only whether they are parallel.
ggraph(hairball) + geom_edge_bundle_force(n_cycle = 2, threshold = 0.4)
An alternative is to let the edges follow the shortest paths rather than attract each other. This means the topology is being used in the bundling and in theory lead to less misleading results. It also has the upside of being faster. The algorithm is iterative so that if an edge has been bundled it is deleted from the graph where the shortest path is being searched in. In this way the edges naturally converge towards a few "highways".
ggraph(hairball) + geom_edge_bundle_path()
In the same vein as edge path bundling but even simpler, you can use the minimal spanning tree of the graph as the scaffold to bundle edges along. As such, it changes to the hierarchical edge bundling approach, just with an implicit hierarchy calculated on the graph. This method is very fast but does create bias in the output as edges will (obviously) travel along the minimal spanning tree thus amplifying that topology.
ggraph(hairball) + geom_edge_bundle_minimal()
Aah... The classic dendrogram with its right angle bends. Of course such
visualizations are also supported with the geom_edge_elbow()
. It goes without
saying that this type of edge requires a layout that flows in a defined
direction, such as a tree:
ggraph(hierarchy, layout = 'dendrogram', height = height) + geom_edge_elbow()
If right angles aren't really your thing ggraph
provides a smoother version in
the form of geom_edge_diagonal()
. This edge is a quadratic bezier with control
points positioned at the same x-value as the terminal nodes and halfway
in-between the nodes on the y-axis. The result is more organic than the elbows:
ggraph(hierarchy, layout = 'dendrogram', height = height) + geom_edge_diagonal()
It tends to look a bit weird with hugely unbalanced trees so use with care...
An alternative to diagonals are bend edges which are elbow edges with a smoothed corner. It is implemented as a quadratic bezier with control points at the location of the expected elbow corner:
ggraph(hierarchy, layout = 'dendrogram', height = height) + geom_edge_bend()
This is certainly a very specific type of edge, intended only for use with hive plots. It draws edges as quadratic beziers with control point positioned perpendicular to the axes of the hive layout:
ggraph(hairball, layout = 'hive', axis = pop_devel, sort.by = popularity) + geom_edge_hive(aes(colour = year)) + geom_axis_hive(label = FALSE) + coord_fixed()
As with the hive edge the geom_edge_span()
is made in particular for a
specific layout - the fabric layout. It draws the edge as a vertical line
connecting the horizontal node lines of the layout, potentially with a terminal
shape.
ggraph(hairball, layout = 'fabric', sort.by = node_rank_fabric()) + geom_node_range(colour = 'grey') + geom_edge_span(end_shape = 'circle') + coord_fixed()
It may seem weird to have edge geoms that doesn't have any span, but the matrix layout calls for exactly that. The terminal nodes of the edge are determined by the vertical and horizontal position of the mark, and for that reason the geom doesn't need any extend. The point and tile geoms serve the same purpose but are simply different geometry types:
ggraph(hairball, layout = 'matrix', sort.by = bfs_rank()) + geom_edge_point() + coord_fixed()
ggraph(hairball, layout = 'matrix', sort.by = bfs_rank()) + geom_edge_tile() + coord_fixed()
Almost all edge geoms comes in three variants. The basic variant (no suffix) as
well as the variant suffixed with 2 (e.g. geom_edge_link2()
) calculates a
number (n
) of points along the edge and draws it as a path. The variant
suffixed with 0 (e.g. geom_edge_diagonal0()
) uses the build in grid grobs to
draw the edges directly (in case of a diagonal it uses bezierGrob()
). It might
seem strange to have so many different implementations of the same geoms but
there's a reason to the insanity...
The basic edge geom is drawn by calculating a number of points along the edge path and draw a line between these. This means that you're in control of the detail level of curved edges and that all complex calculations happens up front. Generally you will see better performance using the base variant rather than the 0-variant that uses grid grobs, unless you set the number of points to calculate to something huge (50--100 is usually sufficient for a smooth look). Apart from better performance you also get a nice bonus (you actually get several, but only one is discussed here): The possibility of drawing a gradient along the edge. Each calculated point gets an index value between 0 and 1 that specifies how far along the edge it is positioned and this value can be used to e.g. map to an alpha level to show the direction of the edge:
ggraph(hairball, layout = 'linear') + geom_edge_arc(aes(colour = year, alpha = after_stat(index))) + scale_edge_alpha('Edge direction', guide = 'edge_direction')
Like the base variant the 2-variant calculates points along the edge and draws a path along them. The difference here is that in this variant you can map node attributes to the edge and the aesthetics are then interpolated along the edge. This is easier to show than to explain:
ggraph(hierarchy, layout = 'dendrogram', height = height) + geom_edge_elbow2(aes(colour = node.Class))
There are considerably more computation going on than in the base variant so unless you need to interpolate values between the terminal nodes you should go with the base variant.
This is, sadly, the boring one at the end. You don't get the luxury of smooth gradients over the edge and often you have a considerably worse performance. What you gain though is tack sharp resolution in the curves so if this is of utmost importance you are covered by this variant.
Many of the edge geoms takes a strength argument that denotes their deviation
from a straight line. Setting strength = 0
will always result in a straight
line, while strength = 1
is the default look. Anything in between can be used
to modify the look of the edge, while values outside that range will probably
result in some weird looks. Some examples are shown below:
small_tree <- create_tree(5, 2) ggraph(small_tree, 'dendrogram') + geom_edge_elbow(strength = 0.75)
ggraph(small_tree, 'dendrogram') + geom_edge_diagonal(strength = 0.5)
An edge is so much more than a line... Well at least it is also potentially an arrow and a label. This section will go into how these can be added. To clearly see the effect here we will use a slightly simpler graph
# Random names - I swear simple <- create_notable('bull') |> mutate(name = c('Thomas', 'Bob', 'Hadley', 'Winston', 'Baptiste')) |> activate(edges) |> mutate(type = sample(c('friend', 'foe'), 5, TRUE))
While we saw above that direction can be encoded as a gradient, the good old
arrow is still available. As with the standard ggplot2
geoms an arrow can be
added using the arrow argument:
ggraph(simple, layout = 'graphopt') + geom_edge_link(arrow = arrow(length = unit(4, 'mm'))) + geom_node_point(size = 5)
I hope you think Ugh at the sight of this. The edges naturally extend to the
node center and nodes are thus drawn on top of the arrow heads. There's a
solution to this in the form of the start_cap
and end_cap
aesthetics in the
base and 2-variant edge geoms (sorry 0-variant). This can be used to start and
stop the edge drawing at an absolute distance from the terminal nodes. Watch this:
ggraph(simple, layout = 'graphopt') + geom_edge_link(arrow = arrow(length = unit(4, 'mm')), end_cap = circle(3, 'mm')) + geom_node_point(size = 5)
Using the circle()
, square()
, ellipsis()
, and rectangle()
helpers it is
possible to get a lot of control over how edges are capped at either end. This
works for any edge, curved or not:
ggraph(simple, layout = 'linear', circular = TRUE) + geom_edge_arc(arrow = arrow(length = unit(4, 'mm')), start_cap = circle(3, 'mm'), end_cap = circle(3, 'mm')) + geom_node_point(size = 5) + coord_fixed()
When plotting node labels you often want to avoid that incoming and outgoing
edges overlaps with the labels. ggraph
provides a helper that calculates the
bounding rectangle of the labels and cap edges based on that:
ggraph(simple, layout = 'graphopt') + geom_edge_link(aes(start_cap = label_rect(node1.name), end_cap = label_rect(node2.name)), arrow = arrow(length = unit(4, 'mm'))) + geom_node_text(aes(label = name))
The capping of edges is dynamic and responds to resizing of the plot so the absolute size of the cap areas are maintained at all time.
In ggraph
there is no such thing as an undirected graph. Every edge has a
start and an end node. For undirected graphs the start and end of edges is
arbitrary but still exists and it is thus possible to add arrowheads to
undirected graphs as well. This should not be done of course, but this is the
responsibility of the user as ggraph
does not make any checks during
rendering.
You would expect that edge labels would be their own geom(s), but ggraph
departs from the stringent grammar interpretation here. This is because the
label placement is dependent on the choice of edge. Because of this edge
labeling is bundled with each edge geom (but not the 0-variant) through the
label aesthetic
ggraph(simple, layout = 'graphopt') + geom_edge_link(aes(label = type), arrow = arrow(length = unit(4, 'mm')), end_cap = circle(3, 'mm')) + geom_node_point(size = 5)
Usually you would like the labels to run along the edges, but providing a
fixed angle will only work at a very specific aspect ratio. Instead ggraph
offers to calculate the correct angle dynamically so the labels always runs
along the edge. Furthermore it can offset the label by an absolute length:
ggraph(simple, layout = 'graphopt') + geom_edge_link(aes(label = type), angle_calc = 'along', label_dodge = unit(2.5, 'mm'), arrow = arrow(length = unit(4, 'mm')), end_cap = circle(3, 'mm')) + geom_node_point(size = 5)
ggraph
offers a lot of additional customization of the edge labels but this
shows the main features. As with arrowheads labels can severely clutter your
visualization so it is only advisable on very simple graphs.
The estranged cousin of edges are connections. While edges show the relational
nature of the nodes in the graph structure, connections connect nodes that are
not connected in the graph. This is done by finding the shortest path between
the two nodes. Currently the only connection geom available is
geom_conn_bundle()
that implements the hierarchical edge bundling technique:
flaregraph <- tbl_graph(flare$vertices, flare$edges) from <- match(flare$imports$from, flare$vertices$name) to <- match(flare$imports$to, flare$vertices$name) ggraph(flaregraph, layout = 'dendrogram', circular = TRUE) + geom_conn_bundle(data = get_con(from = from, to = to), alpha = 0.1) + coord_fixed()
The connection concept is underutilized at the moment but I expect to add more support for this in coming releases.
Check out the other vignettes for more information on how to specify layouts and draw nodes...
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.