Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk[["set"]](
collapse = TRUE,
comment = "#>",
cache = FALSE
)
## ----setup--------------------------------------------------------------------
library(gips)
## ----th1_1--------------------------------------------------------------------
p <- 6
S <- matrix(c(
1.1, 0.9, 0.8, 0.7, 0.8, 0.9,
0.9, 1.1, 0.9, 0.8, 0.7, 0.8,
0.8, 0.9, 1.1, 0.9, 0.8, 0.7,
0.7, 0.8, 0.9, 1.1, 0.9, 0.8,
0.8, 0.7, 0.8, 0.9, 1.1, 0.9,
0.9, 0.8, 0.7, 0.8, 0.9, 1.1
), nrow = p)
## ----th1_2, echo=FALSE--------------------------------------------------------
gips:::pretty_plot_matrix(S, title = "S matrix")
## ----th1_3--------------------------------------------------------------------
g_perm <- gips_perm("(1,2,3,4,5,6)", p)
U_Gamma <- prepare_orthogonal_matrix(g_perm)
block_decomposition <- t(U_Gamma) %*% S %*% U_Gamma
round(block_decomposition, 5)
## ----th1_4, echo=FALSE--------------------------------------------------------
gips:::pretty_plot_block_matrix(S, g_perm, title = "block_decomposition matrix")
## ----th1_5--------------------------------------------------------------------
p <- 6
S <- matrix(c(
1.2, 0.9, 0.9, 0.4, 0.2, 0.1,
0.9, 1.2, 0.9, 0.1, 0.4, 0.2,
0.9, 0.9, 1.2, 0.2, 0.1, 0.4,
0.4, 0.1, 0.2, 1.2, 0.9, 0.9,
0.2, 0.4, 0.1, 0.9, 1.2, 0.9,
0.1, 0.2, 0.4, 0.9, 0.9, 1.2
), nrow = p)
## ----th1_6, echo=FALSE--------------------------------------------------------
gips:::pretty_plot_matrix(S, title = "S matrix")
## ----th1_7--------------------------------------------------------------------
g_perm <- gips_perm("(1,2,3)(4,5,6)", p)
U_Gamma <- prepare_orthogonal_matrix(g_perm)
block_decomposition <- t(U_Gamma) %*% S %*% U_Gamma
round(block_decomposition, 5)
## ----th1_8, echo=FALSE--------------------------------------------------------
gips:::pretty_plot_block_matrix(S, g_perm, title = "block_decomposition matrix")
## ----def3_0, echo=FALSE-------------------------------------------------------
p <- 6
n <- 10
withr::with_seed(2022,
code = Z <- matrix(runif(n * p, min = -10, max = 10), ncol = p)
)
Z[, 1] <- 2 * Z[, 1]
S <- t(Z) %*% Z / n
## ----def3_1-------------------------------------------------------------------
round(S, 2)
## ----def3_2, echo=FALSE-------------------------------------------------------
gips:::pretty_plot_matrix(S, title = "S matrix")
## ----def3_3-------------------------------------------------------------------
S_projected <- project_matrix(S, perm = "(1,2)(3,4,5,6)")
round(S_projected, 2)
## ----def3_4, echo=FALSE-------------------------------------------------------
gips:::pretty_plot_matrix(S_projected, title = "S_projected matrix")
## ----n0_2---------------------------------------------------------------------
g1 <- gips(S, n, perm = "(1,2,3,4,5,6)", was_mean_estimated = FALSE)
summary(g1)$n0
g2 <- gips(S, n, perm = "(1,2)(3,4,5,6)", was_mean_estimated = FALSE)
summary(g2)$n0
## ----n0_1---------------------------------------------------------------------
S <- cov(Z)
g1 <- gips(S, n, perm = "(1,2,3,4,5,6)", was_mean_estimated = TRUE)
summary(g1)$n0
g2 <- gips(S, n, perm = "(1,2)(3,4,5,6)", was_mean_estimated = TRUE)
summary(g2)$n0
## ----example2_readme1---------------------------------------------------------
# Prepare model, multivariate normal distribution
p <- 6
number_of_observations <- 4
mu <- numeric(p)
sigma_matrix <- matrix(
data = c(
1.05, 0.8, 0.6, 0.4, 0.6, 0.8,
0.8, 1.05, 0.8, 0.6, 0.4, 0.6,
0.6, 0.8, 1.05, 0.8, 0.6, 0.4,
0.4, 0.6, 0.8, 1.05, 0.8, 0.6,
0.6, 0.4, 0.6, 0.8, 1.05, 0.8,
0.8, 0.6, 0.4, 0.6, 0.8, 1.05
),
nrow = p, byrow = TRUE
) # sigma_matrix is a matrix invariant under permutation (1,2,3,4,5,6)
# Generate example data from a model:
Z <- withr::with_seed(2022,
code = MASS::mvrnorm(number_of_observations,
mu = mu, Sigma = sigma_matrix
)
)
# End of prepare model
## ----example2_readme2---------------------------------------------------------
dim(Z)
number_of_observations <- nrow(Z) # 4
p <- ncol(Z) # 6
# Calculate the covariance matrix from the data (assume the mean is 0):
S <- (t(Z) %*% Z) / number_of_observations
# Make the gips object out of data:
g <- gips(S, number_of_observations, was_mean_estimated = FALSE)
g_map <- find_MAP(g, optimizer = "brute_force")
print(g_map)
S_projected <- project_matrix(S, g_map)
## ----example2_readme3, echo=FALSE---------------------------------------------
gips:::pretty_plot_matrix(S_projected, title = "S_projected matrix")
## ----example3_1---------------------------------------------------------------
# Prepare model, multivariate normal distribution
p <- 6
number_of_observations <- 7
mu <- numeric(p)
sigma_matrix <- matrix(
data = c(
1.05, 0.8, 0.6, 0.4, 0.6, 0.8,
0.8, 1.05, 0.8, 0.6, 0.4, 0.6,
0.6, 0.8, 1.05, 0.8, 0.6, 0.4,
0.4, 0.6, 0.8, 1.05, 0.8, 0.6,
0.6, 0.4, 0.6, 0.8, 1.05, 0.8,
0.8, 0.6, 0.4, 0.6, 0.8, 1.05
),
nrow = p, byrow = TRUE
) # sigma_matrix is a matrix invariant under permutation (1,2,3,4,5,6)
# Generate example data from a model:
Z <- withr::with_seed(2022,
code = MASS::mvrnorm(number_of_observations,
mu = mu, Sigma = sigma_matrix
)
)
# End of prepare model
## ----example3_2---------------------------------------------------------------
dim(Z)
number_of_observations <- nrow(Z) # 7
p <- ncol(Z) # 6
S <- (t(Z) %*% Z) / number_of_observations
g <- gips(S, number_of_observations, was_mean_estimated = FALSE)
g_map <- find_MAP(g, optimizer = "brute_force")
## ----example3_3---------------------------------------------------------------
AIC(g)
AIC(g_map) # this is smaller, so this is better
BIC(g)
BIC(g_map) # this is smaller, so this is better
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.