inst/doc/Theory.R

## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk[["set"]](
  collapse = TRUE,
  comment = "#>",
  cache = FALSE
)

## ----setup--------------------------------------------------------------------
library(gips)

## ----th1_1--------------------------------------------------------------------
p <- 6
S <- matrix(c(
  1.1, 0.9, 0.8, 0.7, 0.8, 0.9,
  0.9, 1.1, 0.9, 0.8, 0.7, 0.8,
  0.8, 0.9, 1.1, 0.9, 0.8, 0.7,
  0.7, 0.8, 0.9, 1.1, 0.9, 0.8,
  0.8, 0.7, 0.8, 0.9, 1.1, 0.9,
  0.9, 0.8, 0.7, 0.8, 0.9, 1.1
), nrow = p)

## ----th1_2, echo=FALSE--------------------------------------------------------
gips:::pretty_plot_matrix(S, title = "S matrix")

## ----th1_3--------------------------------------------------------------------
g_perm <- gips_perm("(1,2,3,4,5,6)", p)
U_Gamma <- prepare_orthogonal_matrix(g_perm)

block_decomposition <- t(U_Gamma) %*% S %*% U_Gamma
round(block_decomposition, 5)

## ----th1_4, echo=FALSE--------------------------------------------------------
gips:::pretty_plot_block_matrix(S, g_perm, title = "block_decomposition matrix")

## ----th1_5--------------------------------------------------------------------
p <- 6
S <- matrix(c(
  1.2, 0.9, 0.9, 0.4, 0.2, 0.1,
  0.9, 1.2, 0.9, 0.1, 0.4, 0.2,
  0.9, 0.9, 1.2, 0.2, 0.1, 0.4,
  0.4, 0.1, 0.2, 1.2, 0.9, 0.9,
  0.2, 0.4, 0.1, 0.9, 1.2, 0.9,
  0.1, 0.2, 0.4, 0.9, 0.9, 1.2
), nrow = p)

## ----th1_6, echo=FALSE--------------------------------------------------------
gips:::pretty_plot_matrix(S, title = "S matrix")

## ----th1_7--------------------------------------------------------------------
g_perm <- gips_perm("(1,2,3)(4,5,6)", p)
U_Gamma <- prepare_orthogonal_matrix(g_perm)

block_decomposition <- t(U_Gamma) %*% S %*% U_Gamma
round(block_decomposition, 5)

## ----th1_8, echo=FALSE--------------------------------------------------------
gips:::pretty_plot_block_matrix(S, g_perm, title = "block_decomposition matrix")

## ----def3_0, echo=FALSE-------------------------------------------------------
p <- 6
n <- 10
withr::with_seed(2022,
  code = Z <- matrix(runif(n * p, min = -10, max = 10), ncol = p)
)
Z[, 1] <- 2 * Z[, 1]
S <- t(Z) %*% Z / n

## ----def3_1-------------------------------------------------------------------
round(S, 2)

## ----def3_2, echo=FALSE-------------------------------------------------------
gips:::pretty_plot_matrix(S, title = "S matrix")

## ----def3_3-------------------------------------------------------------------
S_projected <- project_matrix(S, perm = "(1,2)(3,4,5,6)")
round(S_projected, 2)

## ----def3_4, echo=FALSE-------------------------------------------------------
gips:::pretty_plot_matrix(S_projected, title = "S_projected matrix")

## ----n0_2---------------------------------------------------------------------
g1 <- gips(S, n, perm = "(1,2,3,4,5,6)", was_mean_estimated = FALSE)
summary(g1)$n0
g2 <- gips(S, n, perm = "(1,2)(3,4,5,6)", was_mean_estimated = FALSE)
summary(g2)$n0

## ----n0_1---------------------------------------------------------------------
S <- cov(Z)
g1 <- gips(S, n, perm = "(1,2,3,4,5,6)", was_mean_estimated = TRUE)
summary(g1)$n0
g2 <- gips(S, n, perm = "(1,2)(3,4,5,6)", was_mean_estimated = TRUE)
summary(g2)$n0

## ----example2_readme1---------------------------------------------------------
# Prepare model, multivariate normal distribution
p <- 6
number_of_observations <- 4
mu <- numeric(p)
sigma_matrix <- matrix(
  data = c(
    1.05, 0.8, 0.6, 0.4, 0.6, 0.8,
    0.8, 1.05, 0.8, 0.6, 0.4, 0.6,
    0.6, 0.8, 1.05, 0.8, 0.6, 0.4,
    0.4, 0.6, 0.8, 1.05, 0.8, 0.6,
    0.6, 0.4, 0.6, 0.8, 1.05, 0.8,
    0.8, 0.6, 0.4, 0.6, 0.8, 1.05
  ),
  nrow = p, byrow = TRUE
) # sigma_matrix is a matrix invariant under permutation (1,2,3,4,5,6)

# Generate example data from a model:
Z <- withr::with_seed(2022,
  code = MASS::mvrnorm(number_of_observations,
    mu = mu, Sigma = sigma_matrix
  )
)
# End of prepare model

## ----example2_readme2---------------------------------------------------------
dim(Z)
number_of_observations <- nrow(Z) # 4
p <- ncol(Z) # 6

# Calculate the covariance matrix from the data (assume the mean is 0):
S <- (t(Z) %*% Z) / number_of_observations

# Make the gips object out of data:
g <- gips(S, number_of_observations, was_mean_estimated = FALSE)

g_map <- find_MAP(g, optimizer = "brute_force")
print(g_map)

S_projected <- project_matrix(S, g_map)

## ----example2_readme3, echo=FALSE---------------------------------------------
gips:::pretty_plot_matrix(S_projected, title = "S_projected matrix")

## ----example3_1---------------------------------------------------------------
# Prepare model, multivariate normal distribution
p <- 6
number_of_observations <- 7
mu <- numeric(p)
sigma_matrix <- matrix(
  data = c(
    1.05, 0.8, 0.6, 0.4, 0.6, 0.8,
    0.8, 1.05, 0.8, 0.6, 0.4, 0.6,
    0.6, 0.8, 1.05, 0.8, 0.6, 0.4,
    0.4, 0.6, 0.8, 1.05, 0.8, 0.6,
    0.6, 0.4, 0.6, 0.8, 1.05, 0.8,
    0.8, 0.6, 0.4, 0.6, 0.8, 1.05
  ),
  nrow = p, byrow = TRUE
) # sigma_matrix is a matrix invariant under permutation (1,2,3,4,5,6)

# Generate example data from a model:
Z <- withr::with_seed(2022,
  code = MASS::mvrnorm(number_of_observations,
    mu = mu, Sigma = sigma_matrix
  )
)
# End of prepare model

## ----example3_2---------------------------------------------------------------
dim(Z)
number_of_observations <- nrow(Z) # 7
p <- ncol(Z) # 6

S <- (t(Z) %*% Z) / number_of_observations

g <- gips(S, number_of_observations, was_mean_estimated = FALSE)
g_map <- find_MAP(g, optimizer = "brute_force")

## ----example3_3---------------------------------------------------------------
AIC(g)
AIC(g_map) # this is smaller, so this is better

BIC(g)
BIC(g_map) # this is smaller, so this is better

Try the gips package in your browser

Any scripts or data that you put into this service are public.

gips documentation built on April 3, 2025, 9:27 p.m.