grkkw | R Documentation |
Computes the gradient vector (vector of first partial derivatives) of the
negative log-likelihood function for the Kumaraswamy-Kumaraswamy (kkw)
distribution with parameters alpha
(\alpha
), beta
(\beta
), delta
(\delta
), and lambda
(\lambda
).
This distribution is the special case of the Generalized Kumaraswamy (GKw)
distribution where \gamma = 1
. The gradient is typically used in
optimization algorithms for maximum likelihood estimation.
grkkw(par, data)
par |
A numeric vector of length 4 containing the distribution parameters
in the order: |
data |
A numeric vector of observations. All values must be strictly between 0 and 1 (exclusive). |
The components of the gradient vector of the negative log-likelihood
(-\nabla \ell(\theta | \mathbf{x})
) for the kkw (\gamma=1
) model are:
-\frac{\partial \ell}{\partial \alpha} = -\frac{n}{\alpha} - \sum_{i=1}^{n}\ln(x_i)
+ (\beta-1)\sum_{i=1}^{n}\frac{x_i^{\alpha}\ln(x_i)}{v_i}
- (\lambda-1)\sum_{i=1}^{n}\frac{\beta v_i^{\beta-1} x_i^{\alpha}\ln(x_i)}{w_i}
+ \delta\sum_{i=1}^{n}\frac{\lambda w_i^{\lambda-1} \beta v_i^{\beta-1} x_i^{\alpha}\ln(x_i)}{z_i}
-\frac{\partial \ell}{\partial \beta} = -\frac{n}{\beta} - \sum_{i=1}^{n}\ln(v_i)
+ (\lambda-1)\sum_{i=1}^{n}\frac{v_i^{\beta}\ln(v_i)}{w_i}
- \delta\sum_{i=1}^{n}\frac{\lambda w_i^{\lambda-1} v_i^{\beta}\ln(v_i)}{z_i}
-\frac{\partial \ell}{\partial \delta} = -\frac{n}{\delta+1} - \sum_{i=1}^{n}\ln(z_i)
-\frac{\partial \ell}{\partial \lambda} = -\frac{n}{\lambda} - \sum_{i=1}^{n}\ln(w_i)
+ \delta\sum_{i=1}^{n}\frac{w_i^{\lambda}\ln(w_i)}{z_i}
where:
v_i = 1 - x_i^{\alpha}
w_i = 1 - v_i^{\beta} = 1 - (1-x_i^{\alpha})^{\beta}
z_i = 1 - w_i^{\lambda} = 1 - [1-(1-x_i^{\alpha})^{\beta}]^{\lambda}
These formulas represent the derivatives of -\ell(\theta)
, consistent with
minimizing the negative log-likelihood. They correspond to the general GKw
gradient (grgkw
) components for \alpha, \beta, \delta, \lambda
evaluated at \gamma=1
. Note that the component for \gamma
is omitted.
Numerical stability is maintained through careful implementation.
Returns a numeric vector of length 4 containing the partial derivatives
of the negative log-likelihood function -\ell(\theta | \mathbf{x})
with
respect to each parameter:
(-\partial \ell/\partial \alpha, -\partial \ell/\partial \beta, -\partial \ell/\partial \delta, -\partial \ell/\partial \lambda)
.
Returns a vector of NaN
if any parameter values are invalid according
to their constraints, or if any value in data
is not in the
interval (0, 1).
Lopes, J. E.
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation,
Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88.
grgkw
(parent distribution gradient),
llkkw
(negative log-likelihood for kkw),
hskkw
(Hessian for kkw),
dkkw
(density for kkw),
optim
,
grad
(for numerical gradient comparison).
# Assuming existence of rkkw, llkkw, grkkw, hskkw functions for kkw
# Generate sample data
set.seed(123)
true_par_kkw <- c(alpha = 2, beta = 3, delta = 1.5, lambda = 0.5)
if (exists("rkkw")) {
sample_data_kkw <- rkkw(100, alpha = true_par_kkw[1], beta = true_par_kkw[2],
delta = true_par_kkw[3], lambda = true_par_kkw[4])
} else {
sample_data_kkw <- rgkw(100, alpha = true_par_kkw[1], beta = true_par_kkw[2],
gamma = 1, delta = true_par_kkw[3], lambda = true_par_kkw[4])
}
# --- Find MLE estimates ---
start_par_kkw <- c(1.5, 2.5, 1.0, 0.6)
mle_result_kkw <- stats::optim(par = start_par_kkw,
fn = llkkw,
gr = grkkw, # Use analytical gradient for kkw
method = "BFGS",
hessian = TRUE,
data = sample_data_kkw)
# --- Compare analytical gradient to numerical gradient ---
if (mle_result_kkw$convergence == 0 &&
requireNamespace("numDeriv", quietly = TRUE)) {
mle_par_kkw <- mle_result_kkw$par
cat("\nComparing Gradients for kkw at MLE estimates:\n")
# Numerical gradient of llkkw
num_grad_kkw <- numDeriv::grad(func = llkkw, x = mle_par_kkw, data = sample_data_kkw)
# Analytical gradient from grkkw
ana_grad_kkw <- grkkw(par = mle_par_kkw, data = sample_data_kkw)
cat("Numerical Gradient (kkw):\n")
print(num_grad_kkw)
cat("Analytical Gradient (kkw):\n")
print(ana_grad_kkw)
# Check differences
cat("Max absolute difference between kkw gradients:\n")
print(max(abs(num_grad_kkw - ana_grad_kkw)))
} else {
cat("\nSkipping kkw gradient comparison.\n")
}
# --- Optional: Compare with relevant components of GKw gradient ---
# Requires grgkw function
if (mle_result_kkw$convergence == 0 && exists("grgkw")) {
# Create 5-param vector for grgkw (insert gamma=1)
mle_par_gkw_equiv <- c(mle_par_kkw[1:2], gamma = 1.0, mle_par_kkw[3:4])
ana_grad_gkw <- grgkw(par = mle_par_gkw_equiv, data = sample_data_kkw)
# Extract components corresponding to alpha, beta, delta, lambda
ana_grad_gkw_subset <- ana_grad_gkw[c(1, 2, 4, 5)]
cat("\nComparison with relevant components of GKw gradient:\n")
cat("Max absolute difference:\n")
print(max(abs(ana_grad_kkw - ana_grad_gkw_subset))) # Should be very small
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.