grkw | R Documentation |
Computes the gradient vector (vector of first partial derivatives) of the
negative log-likelihood function for the two-parameter Kumaraswamy (Kw)
distribution with parameters alpha
(\alpha
) and beta
(\beta
). This provides the analytical gradient often used for efficient
optimization via maximum likelihood estimation.
grkw(par, data)
par |
A numeric vector of length 2 containing the distribution parameters
in the order: |
data |
A numeric vector of observations. All values must be strictly between 0 and 1 (exclusive). |
The components of the gradient vector of the negative log-likelihood
(-\nabla \ell(\theta | \mathbf{x})
) for the Kw model are:
-\frac{\partial \ell}{\partial \alpha} = -\frac{n}{\alpha} - \sum_{i=1}^{n}\ln(x_i)
+ (\beta-1)\sum_{i=1}^{n}\frac{x_i^{\alpha}\ln(x_i)}{v_i}
-\frac{\partial \ell}{\partial \beta} = -\frac{n}{\beta} - \sum_{i=1}^{n}\ln(v_i)
where v_i = 1 - x_i^{\alpha}
.
These formulas represent the derivatives of -\ell(\theta)
, consistent with
minimizing the negative log-likelihood. They correspond to the relevant components
of the general GKw gradient (grgkw
) evaluated at \gamma=1, \delta=0, \lambda=1
.
Returns a numeric vector of length 2 containing the partial derivatives
of the negative log-likelihood function -\ell(\theta | \mathbf{x})
with
respect to each parameter: (-\partial \ell/\partial \alpha, -\partial \ell/\partial \beta)
.
Returns a vector of NaN
if any parameter values are invalid according
to their constraints, or if any value in data
is not in the
interval (0, 1).
Lopes, J. E.
Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88.
Jones, M. C. (2009). Kumaraswamy's distribution: A beta-type distribution with some tractability advantages. Statistical Methodology, 6(1), 70-81.
(Note: Specific gradient formulas might be derived or sourced from additional references).
grgkw
(parent distribution gradient),
llkw
(negative log-likelihood for Kw),
hskw
(Hessian for Kw, if available),
dkw
(density for Kw),
optim
,
grad
(for numerical gradient comparison).
# Assuming existence of rkw, llkw, grkw, hskw functions for Kw
# Generate sample data
set.seed(123)
true_par_kw <- c(alpha = 2, beta = 3)
sample_data_kw <- rkw(100, alpha = true_par_kw[1], beta = true_par_kw[2])
hist(sample_data_kw, breaks = 20, main = "Kw(2, 3) Sample")
# --- Find MLE estimates ---
start_par_kw <- c(1.5, 2.5)
mle_result_kw <- stats::optim(par = start_par_kw,
fn = llkw,
gr = grkw, # Use analytical gradient for Kw
method = "L-BFGS-B", # Recommended for bounds
lower = c(1e-6, 1e-6),
hessian = TRUE,
data = sample_data_kw)
# --- Compare analytical gradient to numerical gradient ---
if (mle_result_kw$convergence == 0 &&
requireNamespace("numDeriv", quietly = TRUE)) {
mle_par_kw <- mle_result_kw$par
cat("\nComparing Gradients for Kw at MLE estimates:\n")
# Numerical gradient of llkw
num_grad_kw <- numDeriv::grad(func = llkw, x = mle_par_kw, data = sample_data_kw)
# Analytical gradient from grkw
ana_grad_kw <- grkw(par = mle_par_kw, data = sample_data_kw)
cat("Numerical Gradient (Kw):\n")
print(num_grad_kw)
cat("Analytical Gradient (Kw):\n")
print(ana_grad_kw)
# Check differences
cat("Max absolute difference between Kw gradients:\n")
print(max(abs(num_grad_kw - ana_grad_kw)))
} else {
cat("\nSkipping Kw gradient comparison.\n")
}
# Example with Hessian comparison (if hskw exists)
if (mle_result_kw$convergence == 0 &&
requireNamespace("numDeriv", quietly = TRUE) && exists("hskw")) {
num_hess_kw <- numDeriv::hessian(func = llkw, x = mle_par_kw, data = sample_data_kw)
ana_hess_kw <- hskw(par = mle_par_kw, data = sample_data_kw)
cat("\nMax absolute difference between Kw Hessians:\n")
print(max(abs(num_hess_kw - ana_hess_kw)))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.