hsekw | R Documentation |
Computes the analytic 3x3 Hessian matrix (matrix of second partial derivatives)
of the negative log-likelihood function for the Exponentiated Kumaraswamy (EKw)
distribution with parameters alpha
(\alpha
), beta
(\beta
), and lambda
(\lambda
). This distribution is the
special case of the Generalized Kumaraswamy (GKw) distribution where
\gamma = 1
and \delta = 0
. The Hessian is useful for estimating
standard errors and in optimization algorithms.
hsekw(par, data)
par |
A numeric vector of length 3 containing the distribution parameters
in the order: |
data |
A numeric vector of observations. All values must be strictly between 0 and 1 (exclusive). |
This function calculates the analytic second partial derivatives of the
negative log-likelihood function based on the EKw log-likelihood
(\gamma=1, \delta=0
case of GKw, see llekw
):
\ell(\theta | \mathbf{x}) = n[\ln(\lambda) + \ln(\alpha) + \ln(\beta)]
+ \sum_{i=1}^{n} [(\alpha-1)\ln(x_i) + (\beta-1)\ln(v_i) + (\lambda-1)\ln(w_i)]
where \theta = (\alpha, \beta, \lambda)
and intermediate terms are:
v_i = 1 - x_i^{\alpha}
w_i = 1 - v_i^{\beta} = 1 - (1-x_i^{\alpha})^{\beta}
The Hessian matrix returned contains the elements - \frac{\partial^2 \ell(\theta | \mathbf{x})}{\partial \theta_i \partial \theta_j}
for \theta_i, \theta_j \in \{\alpha, \beta, \lambda\}
.
Key properties of the returned matrix:
Dimensions: 3x3.
Symmetry: The matrix is symmetric.
Ordering: Rows and columns correspond to the parameters in the order
\alpha, \beta, \lambda
.
Content: Analytic second derivatives of the negative log-likelihood.
This corresponds to the relevant 3x3 submatrix of the 5x5 GKw Hessian (hsgkw
)
evaluated at \gamma=1, \delta=0
. The exact analytical formulas are implemented directly.
Returns a 3x3 numeric matrix representing the Hessian matrix of the
negative log-likelihood function, -\partial^2 \ell / (\partial \theta_i \partial \theta_j)
,
where \theta = (\alpha, \beta, \lambda)
.
Returns a 3x3 matrix populated with NaN
if any parameter values are
invalid according to their constraints, or if any value in data
is
not in the interval (0, 1).
Lopes, J. E.
Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2012). The exponentiated Kumaraswamy distribution. Journal of the Franklin Institute, 349(3),
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation,
Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88.
(Note: Specific Hessian formulas might be derived or sourced from additional references).
hsgkw
(parent distribution Hessian),
llekw
(negative log-likelihood for EKw),
grekw
(gradient for EKw, if available),
dekw
(density for EKw),
optim
,
hessian
(for numerical Hessian comparison).
# Assuming existence of rekw, llekw, grekw, hsekw functions for EKw
# Generate sample data
set.seed(123)
true_par_ekw <- c(alpha = 2, beta = 3, lambda = 0.5)
if (exists("rekw")) {
sample_data_ekw <- rekw(100, alpha = true_par_ekw[1], beta = true_par_ekw[2],
lambda = true_par_ekw[3])
} else {
sample_data_ekw <- rgkw(100, alpha = true_par_ekw[1], beta = true_par_ekw[2],
gamma = 1, delta = 0, lambda = true_par_ekw[3])
}
hist(sample_data_ekw, breaks = 20, main = "EKw(2, 3, 0.5) Sample")
# --- Find MLE estimates ---
start_par_ekw <- c(1.5, 2.5, 0.8)
mle_result_ekw <- stats::optim(par = start_par_ekw,
fn = llekw,
gr = if (exists("grekw")) grekw else NULL,
method = "BFGS",
hessian = TRUE, # Ask optim for numerical Hessian
data = sample_data_ekw)
# --- Compare analytical Hessian to numerical Hessian ---
if (mle_result_ekw$convergence == 0 &&
requireNamespace("numDeriv", quietly = TRUE) &&
exists("hsekw")) {
mle_par_ekw <- mle_result_ekw$par
cat("\nComparing Hessians for EKw at MLE estimates:\n")
# Numerical Hessian of llekw
num_hess_ekw <- numDeriv::hessian(func = llekw, x = mle_par_ekw, data = sample_data_ekw)
# Analytical Hessian from hsekw
ana_hess_ekw <- hsekw(par = mle_par_ekw, data = sample_data_ekw)
cat("Numerical Hessian (EKw):\n")
print(round(num_hess_ekw, 4))
cat("Analytical Hessian (EKw):\n")
print(round(ana_hess_ekw, 4))
# Check differences
cat("Max absolute difference between EKw Hessians:\n")
print(max(abs(num_hess_ekw - ana_hess_ekw)))
# Optional: Use analytical Hessian for Standard Errors
# tryCatch({
# cov_matrix_ekw <- solve(ana_hess_ekw)
# std_errors_ekw <- sqrt(diag(cov_matrix_ekw))
# cat("Std. Errors from Analytical EKw Hessian:\n")
# print(std_errors_ekw)
# }, error = function(e) {
# warning("Could not invert analytical EKw Hessian: ", e$message)
# })
} else {
cat("\nSkipping EKw Hessian comparison.\n")
cat("Requires convergence, 'numDeriv' package, and function 'hsekw'.\n")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.