llkkw: Negative Log-Likelihood for the kkw Distribution

View source: R/RcppExports.R

llkkwR Documentation

Negative Log-Likelihood for the kkw Distribution

Description

Computes the negative log-likelihood function for the Kumaraswamy-Kumaraswamy (kkw) distribution with parameters alpha (\alpha), beta (\beta), delta (\delta), and lambda (\lambda), given a vector of observations. This distribution is a special case of the Generalized Kumaraswamy (GKw) distribution where \gamma = 1.

Usage

llkkw(par, data)

Arguments

par

A numeric vector of length 4 containing the distribution parameters in the order: alpha (\alpha > 0), beta (\beta > 0), delta (\delta \ge 0), lambda (\lambda > 0).

data

A numeric vector of observations. All values must be strictly between 0 and 1 (exclusive).

Details

The kkw distribution is the GKw distribution (dgkw) with \gamma=1. Its probability density function (PDF) is:

f(x | \theta) = (\delta + 1) \lambda \alpha \beta x^{\alpha - 1} (1 - x^\alpha)^{\beta - 1} \bigl[1 - (1 - x^\alpha)^\beta\bigr]^{\lambda - 1} \bigl\{1 - \bigl[1 - (1 - x^\alpha)^\beta\bigr]^\lambda\bigr\}^{\delta}

for 0 < x < 1 and \theta = (\alpha, \beta, \delta, \lambda). The log-likelihood function \ell(\theta | \mathbf{x}) for a sample \mathbf{x} = (x_1, \dots, x_n) is \sum_{i=1}^n \ln f(x_i | \theta):

\ell(\theta | \mathbf{x}) = n[\ln(\delta+1) + \ln(\lambda) + \ln(\alpha) + \ln(\beta)] + \sum_{i=1}^{n} [(\alpha-1)\ln(x_i) + (\beta-1)\ln(v_i) + (\lambda-1)\ln(w_i) + \delta\ln(z_i)]

where:

  • v_i = 1 - x_i^{\alpha}

  • w_i = 1 - v_i^{\beta} = 1 - (1-x_i^{\alpha})^{\beta}

  • z_i = 1 - w_i^{\lambda} = 1 - [1-(1-x_i^{\alpha})^{\beta}]^{\lambda}

This function computes and returns the negative log-likelihood, -\ell(\theta|\mathbf{x}), suitable for minimization using optimization routines like optim. Numerical stability is maintained similarly to llgkw.

Value

Returns a single double value representing the negative log-likelihood (-\ell(\theta|\mathbf{x})). Returns Inf if any parameter values in par are invalid according to their constraints, or if any value in data is not in the interval (0, 1).

Author(s)

Lopes, J. E.

References

Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation,

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88.

See Also

llgkw (parent distribution negative log-likelihood), dkkw, pkkw, qkkw, rkkw, grkkw (gradient, if available), hskkw (Hessian, if available), optim

Examples


# Assuming existence of rkkw, grkkw, hskkw functions for kkw distribution

# Generate sample data from a known kkw distribution
set.seed(123)
true_par_kkw <- c(alpha = 2, beta = 3, delta = 1.5, lambda = 0.5)
# Use rkkw if it exists, otherwise use rgkw with gamma=1
if (exists("rkkw")) {
  sample_data_kkw <- rkkw(100, alpha = true_par_kkw[1], beta = true_par_kkw[2],
                         delta = true_par_kkw[3], lambda = true_par_kkw[4])
} else {
  sample_data_kkw <- rgkw(100, alpha = true_par_kkw[1], beta = true_par_kkw[2],
                         gamma = 1, delta = true_par_kkw[3], lambda = true_par_kkw[4])
}
hist(sample_data_kkw, breaks = 20, main = "kkw(2, 3, 1.5, 0.5) Sample")

# --- Maximum Likelihood Estimation using optim ---
# Initial parameter guess
start_par_kkw <- c(1.5, 2.5, 1.0, 0.6)

# Perform optimization (minimizing negative log-likelihood)
mle_result_kkw <- stats::optim(par = start_par_kkw,
                               fn = llkkw, # Use the kkw neg-log-likelihood
                               method = "BFGS",
                               hessian = TRUE,
                               data = sample_data_kkw)

# Check convergence and results
if (mle_result_kkw$convergence == 0) {
  print("Optimization converged successfully.")
  mle_par_kkw <- mle_result_kkw$par
  print("Estimated kkw parameters:")
  print(mle_par_kkw)
  print("True kkw parameters:")
  print(true_par_kkw)
} else {
  warning("Optimization did not converge!")
  print(mle_result_kkw$message)
}

# --- Compare numerical and analytical derivatives (if available) ---
# Requires 'numDeriv' package and analytical functions 'grkkw', 'hskkw'
if (mle_result_kkw$convergence == 0 &&
    requireNamespace("numDeriv", quietly = TRUE) &&
    exists("grkkw") && exists("hskkw")) {

  cat("\nComparing Derivatives at kkw MLE estimates:\n")

  # Numerical derivatives of llkkw
  num_grad_kkw <- numDeriv::grad(func = llkkw, x = mle_par_kkw, data = sample_data_kkw)
  num_hess_kkw <- numDeriv::hessian(func = llkkw, x = mle_par_kkw, data = sample_data_kkw)

  # Analytical derivatives (assuming they return derivatives of negative LL)
  ana_grad_kkw <- grkkw(par = mle_par_kkw, data = sample_data_kkw)
  ana_hess_kkw <- hskkw(par = mle_par_kkw, data = sample_data_kkw)

  # Check differences
  cat("Max absolute difference between gradients:\n")
  print(max(abs(num_grad_kkw - ana_grad_kkw)))
  cat("Max absolute difference between Hessians:\n")
  print(max(abs(num_hess_kkw - ana_hess_kkw)))

} else {
   cat("\nSkipping derivative comparison for kkw.\n")
   cat("Requires convergence, 'numDeriv' package and functions 'grkkw', 'hskkw'.\n")
}




gkwreg documentation built on April 16, 2025, 1:10 a.m.