pbeta_ | R Documentation |
Computes the cumulative distribution function (CDF), F(q) = P(X \le q)
,
for the standard Beta distribution, using a parameterization common in
generalized distribution families. The distribution is parameterized by
gamma
(\gamma
) and delta
(\delta
), corresponding to
the standard Beta distribution with shape parameters shape1 = gamma
and shape2 = delta + 1
.
pbeta_(q, gamma, delta, lower_tail = TRUE, log_p = FALSE)
q |
Vector of quantiles (values generally between 0 and 1). |
gamma |
First shape parameter ( |
delta |
Second shape parameter is |
lower_tail |
Logical; if |
log_p |
Logical; if |
This function computes the CDF of a Beta distribution with parameters
shape1 = gamma
and shape2 = delta + 1
. It is equivalent to
calling stats::pbeta(q, shape1 = gamma, shape2 = delta + 1,
lower.tail = lower_tail, log.p = log_p)
.
This distribution arises as a special case of the five-parameter
Generalized Kumaraswamy (GKw) distribution (pgkw
) obtained
by setting \alpha = 1
, \beta = 1
, and \lambda = 1
.
It is therefore also equivalent to the McDonald (Mc)/Beta Power distribution
(pmc
) with \lambda = 1
.
The function likely calls R's underlying pbeta
function but ensures
consistent parameter recycling and handling within the C++ environment,
matching the style of other functions in the related families.
A vector of probabilities, F(q)
, or their logarithms/complements
depending on lower_tail
and log_p
. The length of the result
is determined by the recycling rule applied to the arguments (q
,
gamma
, delta
). Returns 0
(or -Inf
if
log_p = TRUE
) for q <= 0
and 1
(or 0
if
log_p = TRUE
) for q >= 1
. Returns NaN
for invalid
parameters.
Lopes, J. E.
Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous Univariate Distributions, Volume 2 (2nd ed.). Wiley.
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation,
pbeta
(standard R implementation),
pgkw
(parent distribution CDF),
pmc
(McDonald/Beta Power CDF),
dbeta_
, qbeta_
, rbeta_
(other functions for this parameterization, if they exist).
# Example values
q_vals <- c(0.2, 0.5, 0.8)
gamma_par <- 2.0 # Corresponds to shape1
delta_par <- 3.0 # Corresponds to shape2 - 1
shape1 <- gamma_par
shape2 <- delta_par + 1
# Calculate CDF using pbeta_
probs <- pbeta_(q_vals, gamma_par, delta_par)
print(probs)
# Compare with stats::pbeta
probs_stats <- stats::pbeta(q_vals, shape1 = shape1, shape2 = shape2)
print(paste("Max difference vs stats::pbeta:", max(abs(probs - probs_stats))))
# Compare with pgkw setting alpha=1, beta=1, lambda=1
probs_gkw <- pgkw(q_vals, alpha = 1.0, beta = 1.0, gamma = gamma_par,
delta = delta_par, lambda = 1.0)
print(paste("Max difference vs pgkw:", max(abs(probs - probs_gkw))))
# Compare with pmc setting lambda=1
probs_mc <- pmc(q_vals, gamma = gamma_par, delta = delta_par, lambda = 1.0)
print(paste("Max difference vs pmc:", max(abs(probs - probs_mc))))
# Calculate upper tail P(X > q)
probs_upper <- pbeta_(q_vals, gamma_par, delta_par, lower_tail = FALSE)
print(probs_upper)
print(stats::pbeta(q_vals, shape1, shape2, lower.tail = FALSE))
# Calculate log CDF
log_probs <- pbeta_(q_vals, gamma_par, delta_par, log_p = TRUE)
print(log_probs)
print(stats::pbeta(q_vals, shape1, shape2, log.p = TRUE))
# Plot the CDF
curve_q <- seq(0.001, 0.999, length.out = 200)
curve_p <- pbeta_(curve_q, gamma = 2, delta = 3) # Beta(2, 4)
plot(curve_q, curve_p, type = "l", main = "Beta(2, 4) CDF via pbeta_",
xlab = "q", ylab = "F(q)", col = "blue")
curve(stats::pbeta(x, 2, 4), add=TRUE, col="red", lty=2)
legend("bottomright", legend=c("pbeta_(gamma=2, delta=3)", "stats::pbeta(shape1=2, shape2=4)"),
col=c("blue", "red"), lty=c(1,2), bty="n")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.