| pekw | R Documentation |
Computes the cumulative distribution function (CDF), P(X \le q), for the
Exponentiated Kumaraswamy (EKw) distribution with parameters alpha
(\alpha), beta (\beta), and lambda (\lambda).
This distribution is defined on the interval (0, 1) and is a special case
of the Generalized Kumaraswamy (GKw) distribution where \gamma = 1
and \delta = 0.
pekw(q, alpha, beta, lambda, lower_tail = TRUE, log_p = FALSE)
q |
Vector of quantiles (values generally between 0 and 1). |
alpha |
Shape parameter |
beta |
Shape parameter |
lambda |
Shape parameter |
lower_tail |
Logical; if |
log_p |
Logical; if |
The Exponentiated Kumaraswamy (EKw) distribution is a special case of the
five-parameter Generalized Kumaraswamy distribution (pgkw)
obtained by setting parameters \gamma = 1 and \delta = 0.
The CDF of the GKw distribution is F_{GKw}(q) = I_{y(q)}(\gamma, \delta+1),
where y(q) = [1-(1-q^{\alpha})^{\beta}]^{\lambda} and I_x(a,b)
is the regularized incomplete beta function (pbeta).
Setting \gamma=1 and \delta=0 gives I_{y(q)}(1, 1). Since
I_x(1, 1) = x, the CDF simplifies to y(q):
F(q; \alpha, \beta, \lambda) = \bigl[1 - (1 - q^\alpha)^\beta \bigr]^\lambda
for 0 < q < 1.
The implementation uses this closed-form expression for efficiency and handles
lower_tail and log_p arguments appropriately.
A vector of probabilities, F(q), or their logarithms/complements
depending on lower_tail and log_p. The length of the result
is determined by the recycling rule applied to the arguments (q,
alpha, beta, lambda). Returns 0 (or -Inf
if log_p = TRUE) for q <= 0 and 1 (or 0 if
log_p = TRUE) for q >= 1. Returns NaN for invalid
parameters.
Lopes, J. E.
Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2012). The exponentiated Kumaraswamy distribution. Journal of the Franklin Institute, 349(3),
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation,
Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88.
pgkw (parent distribution CDF),
dekw, qekw, rekw (other EKw functions),
# Example values
q_vals <- c(0.2, 0.5, 0.8)
alpha_par <- 2.0
beta_par <- 3.0
lambda_par <- 1.5
# Calculate CDF P(X <= q)
probs <- pekw(q_vals, alpha_par, beta_par, lambda_par)
print(probs)
# Calculate upper tail P(X > q)
probs_upper <- pekw(q_vals, alpha_par, beta_par, lambda_par,
lower_tail = FALSE)
print(probs_upper)
# Check: probs + probs_upper should be 1
print(probs + probs_upper)
# Calculate log CDF
log_probs <- pekw(q_vals, alpha_par, beta_par, lambda_par, log_p = TRUE)
print(log_probs)
# Check: should match log(probs)
print(log(probs))
# Compare with pgkw setting gamma = 1, delta = 0
probs_gkw <- pgkw(q_vals, alpha_par, beta_par, gamma = 1.0, delta = 0.0,
lambda = lambda_par)
print(paste("Max difference:", max(abs(probs - probs_gkw)))) # Should be near zero
# Plot the CDF for different lambda values
curve_q <- seq(0.01, 0.99, length.out = 200)
curve_p1 <- pekw(curve_q, alpha = 2, beta = 3, lambda = 0.5)
curve_p2 <- pekw(curve_q, alpha = 2, beta = 3, lambda = 1.0) # standard Kw
curve_p3 <- pekw(curve_q, alpha = 2, beta = 3, lambda = 2.0)
plot(curve_q, curve_p2, type = "l", main = "EKw CDF Examples (alpha=2, beta=3)",
xlab = "q", ylab = "F(q)", col = "red", ylim = c(0, 1))
lines(curve_q, curve_p1, col = "blue")
lines(curve_q, curve_p3, col = "green")
legend("bottomright", legend = c("lambda=0.5", "lambda=1.0 (Kw)", "lambda=2.0"),
col = c("blue", "red", "green"), lty = 1, bty = "n")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.