pekw | R Documentation |
Computes the cumulative distribution function (CDF), P(X \le q)
, for the
Exponentiated Kumaraswamy (EKw) distribution with parameters alpha
(\alpha
), beta
(\beta
), and lambda
(\lambda
).
This distribution is defined on the interval (0, 1) and is a special case
of the Generalized Kumaraswamy (GKw) distribution where \gamma = 1
and \delta = 0
.
pekw(q, alpha, beta, lambda, lower_tail = TRUE, log_p = FALSE)
q |
Vector of quantiles (values generally between 0 and 1). |
alpha |
Shape parameter |
beta |
Shape parameter |
lambda |
Shape parameter |
lower_tail |
Logical; if |
log_p |
Logical; if |
The Exponentiated Kumaraswamy (EKw) distribution is a special case of the
five-parameter Generalized Kumaraswamy distribution (pgkw
)
obtained by setting parameters \gamma = 1
and \delta = 0
.
The CDF of the GKw distribution is F_{GKw}(q) = I_{y(q)}(\gamma, \delta+1)
,
where y(q) = [1-(1-q^{\alpha})^{\beta}]^{\lambda}
and I_x(a,b)
is the regularized incomplete beta function (pbeta
).
Setting \gamma=1
and \delta=0
gives I_{y(q)}(1, 1)
. Since
I_x(1, 1) = x
, the CDF simplifies to y(q)
:
F(q; \alpha, \beta, \lambda) = \bigl[1 - (1 - q^\alpha)^\beta \bigr]^\lambda
for 0 < q < 1
.
The implementation uses this closed-form expression for efficiency and handles
lower_tail
and log_p
arguments appropriately.
A vector of probabilities, F(q)
, or their logarithms/complements
depending on lower_tail
and log_p
. The length of the result
is determined by the recycling rule applied to the arguments (q
,
alpha
, beta
, lambda
). Returns 0
(or -Inf
if log_p = TRUE
) for q <= 0
and 1
(or 0
if
log_p = TRUE
) for q >= 1
. Returns NaN
for invalid
parameters.
Lopes, J. E.
Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2012). The exponentiated Kumaraswamy distribution. Journal of the Franklin Institute, 349(3),
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation,
Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88.
pgkw
(parent distribution CDF),
dekw
, qekw
, rekw
(other EKw functions),
# Example values
q_vals <- c(0.2, 0.5, 0.8)
alpha_par <- 2.0
beta_par <- 3.0
lambda_par <- 1.5
# Calculate CDF P(X <= q)
probs <- pekw(q_vals, alpha_par, beta_par, lambda_par)
print(probs)
# Calculate upper tail P(X > q)
probs_upper <- pekw(q_vals, alpha_par, beta_par, lambda_par,
lower_tail = FALSE)
print(probs_upper)
# Check: probs + probs_upper should be 1
print(probs + probs_upper)
# Calculate log CDF
log_probs <- pekw(q_vals, alpha_par, beta_par, lambda_par, log_p = TRUE)
print(log_probs)
# Check: should match log(probs)
print(log(probs))
# Compare with pgkw setting gamma = 1, delta = 0
probs_gkw <- pgkw(q_vals, alpha_par, beta_par, gamma = 1.0, delta = 0.0,
lambda = lambda_par)
print(paste("Max difference:", max(abs(probs - probs_gkw)))) # Should be near zero
# Plot the CDF for different lambda values
curve_q <- seq(0.01, 0.99, length.out = 200)
curve_p1 <- pekw(curve_q, alpha = 2, beta = 3, lambda = 0.5)
curve_p2 <- pekw(curve_q, alpha = 2, beta = 3, lambda = 1.0) # standard Kw
curve_p3 <- pekw(curve_q, alpha = 2, beta = 3, lambda = 2.0)
plot(curve_q, curve_p2, type = "l", main = "EKw CDF Examples (alpha=2, beta=3)",
xlab = "q", ylab = "F(q)", col = "red", ylim = c(0, 1))
lines(curve_q, curve_p1, col = "blue")
lines(curve_q, curve_p3, col = "green")
legend("bottomright", legend = c("lambda=0.5", "lambda=1.0 (Kw)", "lambda=2.0"),
col = c("blue", "red", "green"), lty = 1, bty = "n")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.