qbkw | R Documentation |
Computes the quantile function (inverse CDF) for the Beta-Kumaraswamy (BKw)
distribution with parameters alpha
(\alpha
), beta
(\beta
), gamma
(\gamma
), and delta
(\delta
).
It finds the value q
such that P(X \le q) = p
. This distribution
is a special case of the Generalized Kumaraswamy (GKw) distribution where
the parameter \lambda = 1
.
qbkw(p, alpha, beta, gamma, delta, lower_tail = TRUE, log_p = FALSE)
p |
Vector of probabilities (values between 0 and 1). |
alpha |
Shape parameter |
beta |
Shape parameter |
gamma |
Shape parameter |
delta |
Shape parameter |
lower_tail |
Logical; if |
log_p |
Logical; if |
The quantile function Q(p)
is the inverse of the CDF F(q)
. The CDF
for the BKw (\lambda=1
) distribution is F(q) = I_{y(q)}(\gamma, \delta+1)
,
where y(q) = 1 - (1 - q^\alpha)^\beta
and I_z(a,b)
is the
regularized incomplete beta function (see pbkw
).
To find the quantile q
, we first invert the outer Beta part: let
y = I^{-1}_{p}(\gamma, \delta+1)
, where I^{-1}_p(a,b)
is the
inverse of the regularized incomplete beta function, computed via
qbeta
. Then, we invert the inner Kumaraswamy part:
y = 1 - (1 - q^\alpha)^\beta
, which leads to q = \{1 - (1-y)^{1/\beta}\}^{1/\alpha}
.
Substituting y
gives the quantile function:
Q(p) = \left\{ 1 - \left[ 1 - I^{-1}_{p}(\gamma, \delta+1) \right]^{1/\beta} \right\}^{1/\alpha}
The function uses this formula, calculating I^{-1}_{p}(\gamma, \delta+1)
via qbeta(p, gamma, delta + 1, ...)
while respecting the
lower_tail
and log_p
arguments.
A vector of quantiles corresponding to the given probabilities p
.
The length of the result is determined by the recycling rule applied to
the arguments (p
, alpha
, beta
, gamma
, delta
).
Returns:
0
for p = 0
(or p = -Inf
if log_p = TRUE
,
when lower_tail = TRUE
).
1
for p = 1
(or p = 0
if log_p = TRUE
,
when lower_tail = TRUE
).
NaN
for p < 0
or p > 1
(or corresponding log scale).
NaN
for invalid parameters (e.g., alpha <= 0
,
beta <= 0
, gamma <= 0
, delta < 0
).
Boundary return values are adjusted accordingly for lower_tail = FALSE
.
Lopes, J. E.
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation
Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88.
qgkw
(parent distribution quantile function),
dbkw
, pbkw
, rbkw
(other BKw functions),
qbeta
# Example values
p_vals <- c(0.1, 0.5, 0.9)
alpha_par <- 2.0
beta_par <- 1.5
gamma_par <- 1.0
delta_par <- 0.5
# Calculate quantiles
quantiles <- qbkw(p_vals, alpha_par, beta_par, gamma_par, delta_par)
print(quantiles)
# Calculate quantiles for upper tail probabilities P(X > q) = p
quantiles_upper <- qbkw(p_vals, alpha_par, beta_par, gamma_par, delta_par,
lower_tail = FALSE)
print(quantiles_upper)
# Check: qbkw(p, ..., lt=F) == qbkw(1-p, ..., lt=T)
print(qbkw(1 - p_vals, alpha_par, beta_par, gamma_par, delta_par))
# Calculate quantiles from log probabilities
log_p_vals <- log(p_vals)
quantiles_logp <- qbkw(log_p_vals, alpha_par, beta_par, gamma_par, delta_par,
log_p = TRUE)
print(quantiles_logp)
# Check: should match original quantiles
print(quantiles)
# Compare with qgkw setting lambda = 1
quantiles_gkw <- qgkw(p_vals, alpha_par, beta_par, gamma = gamma_par,
delta = delta_par, lambda = 1.0)
print(paste("Max difference:", max(abs(quantiles - quantiles_gkw)))) # Should be near zero
# Verify inverse relationship with pbkw
p_check <- 0.75
q_calc <- qbkw(p_check, alpha_par, beta_par, gamma_par, delta_par)
p_recalc <- pbkw(q_calc, alpha_par, beta_par, gamma_par, delta_par)
print(paste("Original p:", p_check, " Recalculated p:", p_recalc))
# abs(p_check - p_recalc) < 1e-9 # Should be TRUE
# Boundary conditions
print(qbkw(c(0, 1), alpha_par, beta_par, gamma_par, delta_par)) # Should be 0, 1
print(qbkw(c(-Inf, 0), alpha_par, beta_par, gamma_par, delta_par, log_p = TRUE)) # Should be 0, 1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.