qekw | R Documentation |
Computes the quantile function (inverse CDF) for the Exponentiated
Kumaraswamy (EKw) distribution with parameters alpha
(\alpha
),
beta
(\beta
), and lambda
(\lambda
).
It finds the value q
such that P(X \le q) = p
. This distribution
is a special case of the Generalized Kumaraswamy (GKw) distribution where
\gamma = 1
and \delta = 0
.
qekw(p, alpha, beta, lambda, lower_tail = TRUE, log_p = FALSE)
p |
Vector of probabilities (values between 0 and 1). |
alpha |
Shape parameter |
beta |
Shape parameter |
lambda |
Shape parameter |
lower_tail |
Logical; if |
log_p |
Logical; if |
The quantile function Q(p)
is the inverse of the CDF F(q)
. The CDF
for the EKw (\gamma=1, \delta=0
) distribution is F(q) = [1 - (1 - q^\alpha)^\beta ]^\lambda
(see pekw
). Inverting this equation for q
yields the
quantile function:
Q(p) = \left\{ 1 - \left[ 1 - p^{1/\lambda} \right]^{1/\beta} \right\}^{1/\alpha}
The function uses this closed-form expression and correctly handles the
lower_tail
and log_p
arguments by transforming p
appropriately before applying the formula. This is equivalent to the general
GKw quantile function (qgkw
) evaluated with \gamma=1, \delta=0
.
A vector of quantiles corresponding to the given probabilities p
.
The length of the result is determined by the recycling rule applied to
the arguments (p
, alpha
, beta
, lambda
).
Returns:
0
for p = 0
(or p = -Inf
if log_p = TRUE
,
when lower_tail = TRUE
).
1
for p = 1
(or p = 0
if log_p = TRUE
,
when lower_tail = TRUE
).
NaN
for p < 0
or p > 1
(or corresponding log scale).
NaN
for invalid parameters (e.g., alpha <= 0
,
beta <= 0
, lambda <= 0
).
Boundary return values are adjusted accordingly for lower_tail = FALSE
.
Lopes, J. E.
Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2012). The exponentiated Kumaraswamy distribution. Journal of the Franklin Institute, 349(3),
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation,
Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88.
qgkw
(parent distribution quantile function),
dekw
, pekw
, rekw
(other EKw functions),
qunif
# Example values
p_vals <- c(0.1, 0.5, 0.9)
alpha_par <- 2.0
beta_par <- 3.0
lambda_par <- 1.5
# Calculate quantiles
quantiles <- qekw(p_vals, alpha_par, beta_par, lambda_par)
print(quantiles)
# Calculate quantiles for upper tail probabilities P(X > q) = p
quantiles_upper <- qekw(p_vals, alpha_par, beta_par, lambda_par,
lower_tail = FALSE)
print(quantiles_upper)
# Check: qekw(p, ..., lt=F) == qekw(1-p, ..., lt=T)
print(qekw(1 - p_vals, alpha_par, beta_par, lambda_par))
# Calculate quantiles from log probabilities
log_p_vals <- log(p_vals)
quantiles_logp <- qekw(log_p_vals, alpha_par, beta_par, lambda_par,
log_p = TRUE)
print(quantiles_logp)
# Check: should match original quantiles
print(quantiles)
# Compare with qgkw setting gamma = 1, delta = 0
quantiles_gkw <- qgkw(p_vals, alpha = alpha_par, beta = beta_par,
gamma = 1.0, delta = 0.0, lambda = lambda_par)
print(paste("Max difference:", max(abs(quantiles - quantiles_gkw)))) # Should be near zero
# Verify inverse relationship with pekw
p_check <- 0.75
q_calc <- qekw(p_check, alpha_par, beta_par, lambda_par)
p_recalc <- pekw(q_calc, alpha_par, beta_par, lambda_par)
print(paste("Original p:", p_check, " Recalculated p:", p_recalc))
# abs(p_check - p_recalc) < 1e-9 # Should be TRUE
# Boundary conditions
print(qekw(c(0, 1), alpha_par, beta_par, lambda_par)) # Should be 0, 1
print(qekw(c(-Inf, 0), alpha_par, beta_par, lambda_par, log_p = TRUE)) # Should be 0, 1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.