qkkw | R Documentation |
Computes the quantile function (inverse CDF) for the Kumaraswamy-Kumaraswamy
(kkw) distribution with parameters alpha
(\alpha
), beta
(\beta
), delta
(\delta
), and lambda
(\lambda
).
It finds the value q
such that P(X \le q) = p
. This distribution
is a special case of the Generalized Kumaraswamy (GKw) distribution where
the parameter \gamma = 1
.
qkkw(p, alpha, beta, delta, lambda, lower_tail = TRUE, log_p = FALSE)
p |
Vector of probabilities (values between 0 and 1). |
alpha |
Shape parameter |
beta |
Shape parameter |
delta |
Shape parameter |
lambda |
Shape parameter |
lower_tail |
Logical; if |
log_p |
Logical; if |
The quantile function Q(p)
is the inverse of the CDF F(q)
. The CDF
for the kkw (\gamma=1
) distribution is (see pkkw
):
F(q) = 1 - \bigl\{1 - \bigl[1 - (1 - q^\alpha)^\beta\bigr]^\lambda\bigr\}^{\delta + 1}
Inverting this equation for q
yields the quantile function:
Q(p) = \left[ 1 - \left\{ 1 - \left[ 1 - (1 - p)^{1/(\delta+1)} \right]^{1/\lambda} \right\}^{1/\beta} \right]^{1/\alpha}
The function uses this closed-form expression and correctly handles the
lower_tail
and log_p
arguments by transforming p
appropriately before applying the formula.
A vector of quantiles corresponding to the given probabilities p
.
The length of the result is determined by the recycling rule applied to
the arguments (p
, alpha
, beta
, delta
,
lambda
). Returns:
0
for p = 0
(or p = -Inf
if log_p = TRUE
,
when lower_tail = TRUE
).
1
for p = 1
(or p = 0
if log_p = TRUE
,
when lower_tail = TRUE
).
NaN
for p < 0
or p > 1
(or corresponding log scale).
NaN
for invalid parameters (e.g., alpha <= 0
,
beta <= 0
, delta < 0
, lambda <= 0
).
Boundary return values are adjusted accordingly for lower_tail = FALSE
.
Lopes, J. E.
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation,
Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88.
qgkw
(parent distribution quantile function),
dkkw
, pkkw
, rkkw
,
qbeta
# Example values
p_vals <- c(0.1, 0.5, 0.9)
alpha_par <- 2.0
beta_par <- 3.0
delta_par <- 0.5
lambda_par <- 1.5
# Calculate quantiles
quantiles <- qkkw(p_vals, alpha_par, beta_par, delta_par, lambda_par)
print(quantiles)
# Calculate quantiles for upper tail probabilities P(X > q) = p
# e.g., for p=0.1, find q such that P(X > q) = 0.1 (90th percentile)
quantiles_upper <- qkkw(p_vals, alpha_par, beta_par, delta_par, lambda_par,
lower_tail = FALSE)
print(quantiles_upper)
# Check: qkkw(p, ..., lt=F) == qkkw(1-p, ..., lt=T)
print(qkkw(1 - p_vals, alpha_par, beta_par, delta_par, lambda_par))
# Calculate quantiles from log probabilities
log_p_vals <- log(p_vals)
quantiles_logp <- qkkw(log_p_vals, alpha_par, beta_par, delta_par, lambda_par,
log_p = TRUE)
print(quantiles_logp)
# Check: should match original quantiles
print(quantiles)
# Compare with qgkw setting gamma = 1
quantiles_gkw <- qgkw(p_vals, alpha_par, beta_par, gamma = 1.0,
delta_par, lambda_par)
print(paste("Max difference:", max(abs(quantiles - quantiles_gkw)))) # Should be near zero
# Verify inverse relationship with pkkw
p_check <- 0.75
q_calc <- qkkw(p_check, alpha_par, beta_par, delta_par, lambda_par)
p_recalc <- pkkw(q_calc, alpha_par, beta_par, delta_par, lambda_par)
print(paste("Original p:", p_check, " Recalculated p:", p_recalc))
# abs(p_check - p_recalc) < 1e-9 # Should be TRUE
# Boundary conditions
print(qkkw(c(0, 1), alpha_par, beta_par, delta_par, lambda_par)) # Should be 0, 1
print(qkkw(c(-Inf, 0), alpha_par, beta_par, delta_par, lambda_par, log_p = TRUE)) # Should be 0, 1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.