| qmc | R Documentation |
Computes the quantile function (inverse CDF) for the McDonald (Mc) distribution
(also known as Beta Power) with parameters gamma (\gamma),
delta (\delta), and lambda (\lambda). It finds the
value q such that P(X \le q) = p. This distribution is a special
case of the Generalized Kumaraswamy (GKw) distribution where \alpha = 1
and \beta = 1.
qmc(p, gamma, delta, lambda, lower_tail = TRUE, log_p = FALSE)
p |
Vector of probabilities (values between 0 and 1). |
gamma |
Shape parameter |
delta |
Shape parameter |
lambda |
Shape parameter |
lower_tail |
Logical; if |
log_p |
Logical; if |
The quantile function Q(p) is the inverse of the CDF F(q). The CDF
for the Mc (\alpha=1, \beta=1) distribution is F(q) = I_{q^\lambda}(\gamma, \delta+1),
where I_z(a,b) is the regularized incomplete beta function (see pmc).
To find the quantile q, we first invert the Beta function part: let
y = I^{-1}_{p}(\gamma, \delta+1), where I^{-1}_p(a,b) is the
inverse computed via qbeta. We then solve q^\lambda = y
for q, yielding the quantile function:
Q(p) = \left[ I^{-1}_{p}(\gamma, \delta+1) \right]^{1/\lambda}
The function uses this formula, calculating I^{-1}_{p}(\gamma, \delta+1)
via qbeta(p, gamma, delta + 1, ...) while respecting the
lower_tail and log_p arguments. This is equivalent to the general
GKw quantile function (qgkw) evaluated with \alpha=1, \beta=1.
A vector of quantiles corresponding to the given probabilities p.
The length of the result is determined by the recycling rule applied to
the arguments (p, gamma, delta, lambda).
Returns:
0 for p = 0 (or p = -Inf if log_p = TRUE,
when lower_tail = TRUE).
1 for p = 1 (or p = 0 if log_p = TRUE,
when lower_tail = TRUE).
NaN for p < 0 or p > 1 (or corresponding log scale).
NaN for invalid parameters (e.g., gamma <= 0,
delta < 0, lambda <= 0).
Boundary return values are adjusted accordingly for lower_tail = FALSE.
Lopes, J. E.
McDonald, J. B. (1984). Some generalized functions for the size distribution of income. Econometrica, 52(3), 647-663.
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation,
Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88.
qgkw (parent distribution quantile function),
dmc, pmc, rmc (other Mc functions),
qbeta
# Example values
p_vals <- c(0.1, 0.5, 0.9)
gamma_par <- 2.0
delta_par <- 1.5
lambda_par <- 1.0 # Equivalent to Beta(gamma, delta+1)
# Calculate quantiles using qmc
quantiles <- qmc(p_vals, gamma_par, delta_par, lambda_par)
print(quantiles)
# Compare with Beta quantiles
print(stats::qbeta(p_vals, shape1 = gamma_par, shape2 = delta_par + 1))
# Calculate quantiles for upper tail probabilities P(X > q) = p
quantiles_upper <- qmc(p_vals, gamma_par, delta_par, lambda_par,
lower_tail = FALSE)
print(quantiles_upper)
# Check: qmc(p, ..., lt=F) == qmc(1-p, ..., lt=T)
print(qmc(1 - p_vals, gamma_par, delta_par, lambda_par))
# Calculate quantiles from log probabilities
log_p_vals <- log(p_vals)
quantiles_logp <- qmc(log_p_vals, gamma_par, delta_par, lambda_par, log_p = TRUE)
print(quantiles_logp)
# Check: should match original quantiles
print(quantiles)
# Compare with qgkw setting alpha = 1, beta = 1
quantiles_gkw <- qgkw(p_vals, alpha = 1.0, beta = 1.0, gamma = gamma_par,
delta = delta_par, lambda = lambda_par)
print(paste("Max difference:", max(abs(quantiles - quantiles_gkw)))) # Should be near zero
# Verify inverse relationship with pmc
p_check <- 0.75
q_calc <- qmc(p_check, gamma_par, delta_par, lambda_par) # Use lambda != 1
p_recalc <- pmc(q_calc, gamma_par, delta_par, lambda_par)
print(paste("Original p:", p_check, " Recalculated p:", p_recalc))
# abs(p_check - p_recalc) < 1e-9 # Should be TRUE
# Boundary conditions
print(qmc(c(0, 1), gamma_par, delta_par, lambda_par)) # Should be 0, 1
print(qmc(c(-Inf, 0), gamma_par, delta_par, lambda_par, log_p = TRUE)) # Should be 0, 1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.