rgkw | R Documentation |
Generates random deviates from the five-parameter Generalized Kumaraswamy (GKw) distribution defined on the interval (0, 1).
rgkw(n, alpha, beta, gamma, delta, lambda)
n |
Number of observations. If |
alpha |
Shape parameter |
beta |
Shape parameter |
gamma |
Shape parameter |
delta |
Shape parameter |
lambda |
Shape parameter |
The generation method relies on the transformation property: if
V \sim \mathrm{Beta}(\gamma, \delta+1)
, then the random variable X
defined as
X = \left\{ 1 - \left[ 1 - V^{1/\lambda} \right]^{1/\beta} \right\}^{1/\alpha}
follows the GKw(\alpha, \beta, \gamma, \delta, \lambda
) distribution.
The algorithm proceeds as follows:
Generate V
from stats::rbeta(n, shape1 = gamma, shape2 = delta + 1)
.
Calculate v = V^{1/\lambda}
.
Calculate w = (1 - v)^{1/\beta}
.
Calculate x = (1 - w)^{1/\alpha}
.
Parameters (alpha
, beta
, gamma
, delta
, lambda
)
are recycled to match the length required by n
. Numerical stability is
maintained by handling potential edge cases during the transformations.
A vector of length n
containing random deviates from the GKw
distribution. The length of the result is determined by n
and the
recycling rule applied to the parameters (alpha
, beta
,
gamma
, delta
, lambda
). Returns NaN
if parameters
are invalid (e.g., alpha <= 0
, beta <= 0
, gamma <= 0
,
delta < 0
, lambda <= 0
).
Lopes, J. E.
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation
Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88.
dgkw
, pgkw
, qgkw
,
rbeta
, set.seed
set.seed(1234) # for reproducibility
# Generate 1000 random values from a specific GKw distribution (Kw case)
x_sample <- rgkw(1000, alpha = 2, beta = 3, gamma = 1, delta = 0, lambda = 1)
summary(x_sample)
# Histogram of generated values compared to theoretical density
hist(x_sample, breaks = 30, freq = FALSE, # freq=FALSE for density scale
main = "Histogram of GKw(2,3,1,0,1) Sample", xlab = "x", ylim = c(0, 2.5))
curve(dgkw(x, alpha = 2, beta = 3, gamma = 1, delta = 0, lambda = 1),
add = TRUE, col = "red", lwd = 2, n = 201)
legend("topright", legend = "Theoretical PDF", col = "red", lwd = 2, bty = "n")
# Comparing empirical and theoretical quantiles (Q-Q plot)
prob_points <- seq(0.01, 0.99, by = 0.01)
theo_quantiles <- qgkw(prob_points, alpha = 2, beta = 3, gamma = 1, delta = 0, lambda = 1)
emp_quantiles <- quantile(x_sample, prob_points)
plot(theo_quantiles, emp_quantiles, pch = 16, cex = 0.8,
main = "Q-Q Plot for GKw(2,3,1,0,1)",
xlab = "Theoretical Quantiles", ylab = "Empirical Quantiles (n=1000)")
abline(a = 0, b = 1, col = "blue", lty = 2)
# Using vectorized parameters: generate 1 value for each alpha
alphas_vec <- c(0.5, 1.0, 2.0)
n_param <- length(alphas_vec)
samples_vec <- rgkw(n_param, alpha = alphas_vec, beta = 2, gamma = 1, delta = 0, lambda = 1)
print(samples_vec) # One sample for each alpha value
# Result length matches n=3, parameters alpha recycled accordingly
# Example with invalid parameters (should produce NaN)
invalid_sample <- rgkw(1, alpha = -1, beta = 2, gamma = 1, delta = 0, lambda = 1)
print(invalid_sample)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.