rkkw | R Documentation |
Generates random deviates from the Kumaraswamy-Kumaraswamy (kkw)
distribution with parameters alpha
(\alpha
), beta
(\beta
), delta
(\delta
), and lambda
(\lambda
).
This distribution is a special case of the Generalized Kumaraswamy (GKw)
distribution where the parameter \gamma = 1
.
rkkw(n, alpha, beta, delta, lambda)
n |
Number of observations. If |
alpha |
Shape parameter |
beta |
Shape parameter |
delta |
Shape parameter |
lambda |
Shape parameter |
The generation method uses the inverse transform method based on the quantile
function (qkkw
). The kkw quantile function is:
Q(p) = \left[ 1 - \left\{ 1 - \left[ 1 - (1 - p)^{1/(\delta+1)} \right]^{1/\lambda} \right\}^{1/\beta} \right]^{1/\alpha}
Random deviates are generated by evaluating Q(p)
where p
is a
random variable following the standard Uniform distribution on (0, 1)
(runif
).
This is equivalent to the general method for the GKw distribution
(rgkw
) specialized for \gamma=1
. The GKw method generates
W \sim \mathrm{Beta}(\gamma, \delta+1)
and then applies transformations.
When \gamma=1
, W \sim \mathrm{Beta}(1, \delta+1)
, which can be
generated via W = 1 - V^{1/(\delta+1)}
where V \sim \mathrm{Unif}(0,1)
.
Substituting this W
into the GKw transformation yields the same result
as evaluating Q(1-V)
above (noting p = 1-V
is also Uniform).
A vector of length n
containing random deviates from the kkw
distribution. The length of the result is determined by n
and the
recycling rule applied to the parameters (alpha
, beta
,
delta
, lambda
). Returns NaN
if parameters
are invalid (e.g., alpha <= 0
, beta <= 0
, delta < 0
,
lambda <= 0
).
Lopes, J. E.
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation
Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88.
Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag. (General methods for random variate generation).
rgkw
(parent distribution random generation),
dkkw
, pkkw
, qkkw
,
runif
, rbeta
set.seed(2025) # for reproducibility
# Generate 1000 random values from a specific kkw distribution
alpha_par <- 2.0
beta_par <- 3.0
delta_par <- 0.5
lambda_par <- 1.5
x_sample_kkw <- rkkw(1000, alpha = alpha_par, beta = beta_par,
delta = delta_par, lambda = lambda_par)
summary(x_sample_kkw)
# Histogram of generated values compared to theoretical density
hist(x_sample_kkw, breaks = 30, freq = FALSE, # freq=FALSE for density
main = "Histogram of kkw Sample", xlab = "x", ylim = c(0, 3.5))
curve(dkkw(x, alpha = alpha_par, beta = beta_par, delta = delta_par,
lambda = lambda_par),
add = TRUE, col = "red", lwd = 2, n = 201)
legend("topright", legend = "Theoretical PDF", col = "red", lwd = 2, bty = "n")
# Comparing empirical and theoretical quantiles (Q-Q plot)
prob_points <- seq(0.01, 0.99, by = 0.01)
theo_quantiles <- qkkw(prob_points, alpha = alpha_par, beta = beta_par,
delta = delta_par, lambda = lambda_par)
emp_quantiles <- quantile(x_sample_kkw, prob_points, type = 7) # type 7 is default
plot(theo_quantiles, emp_quantiles, pch = 16, cex = 0.8,
main = "Q-Q Plot for kkw Distribution",
xlab = "Theoretical Quantiles", ylab = "Empirical Quantiles (n=1000)")
abline(a = 0, b = 1, col = "blue", lty = 2)
# Compare summary stats with rgkw(..., gamma=1, ...)
# Note: individual values will differ due to randomness
x_sample_gkw <- rgkw(1000, alpha = alpha_par, beta = beta_par, gamma = 1.0,
delta = delta_par, lambda = lambda_par)
print("Summary stats for rkkw sample:")
print(summary(x_sample_kkw))
print("Summary stats for rgkw(gamma=1) sample:")
print(summary(x_sample_gkw)) # Should be similar
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.