rmc | R Documentation |
Generates random deviates from the McDonald (Mc) distribution (also known as
Beta Power) with parameters gamma
(\gamma
), delta
(\delta
), and lambda
(\lambda
). This distribution is a
special case of the Generalized Kumaraswamy (GKw) distribution where
\alpha = 1
and \beta = 1
.
rmc(n, gamma, delta, lambda)
n |
Number of observations. If |
gamma |
Shape parameter |
delta |
Shape parameter |
lambda |
Shape parameter |
The generation method uses the relationship between the GKw distribution and the
Beta distribution. The general procedure for GKw (rgkw
) is:
If W \sim \mathrm{Beta}(\gamma, \delta+1)
, then
X = \{1 - [1 - W^{1/\lambda}]^{1/\beta}\}^{1/\alpha}
follows the
GKw(\alpha, \beta, \gamma, \delta, \lambda
) distribution.
For the Mc distribution, \alpha=1
and \beta=1
. Therefore, the
algorithm simplifies significantly:
Generate U \sim \mathrm{Beta}(\gamma, \delta+1)
using
rbeta
.
Compute the Mc variate X = U^{1/\lambda}
.
This procedure is implemented efficiently, handling parameter recycling as needed.
A vector of length n
containing random deviates from the Mc
distribution, with values in (0, 1). The length of the result is determined
by n
and the recycling rule applied to the parameters (gamma
,
delta
, lambda
). Returns NaN
if parameters
are invalid (e.g., gamma <= 0
, delta < 0
, lambda <= 0
).
Lopes, J. E.
McDonald, J. B. (1984). Some generalized functions for the size distribution of income. Econometrica, 52(3), 647-663.
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation,
Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88.
Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag. (General methods for random variate generation).
rgkw
(parent distribution random generation),
dmc
, pmc
, qmc
(other Mc functions),
rbeta
set.seed(2028) # for reproducibility
# Generate 1000 random values from a specific Mc distribution
gamma_par <- 2.0
delta_par <- 1.5
lambda_par <- 1.0 # Equivalent to Beta(gamma, delta+1)
x_sample_mc <- rmc(1000, gamma = gamma_par, delta = delta_par,
lambda = lambda_par)
summary(x_sample_mc)
# Histogram of generated values compared to theoretical density
hist(x_sample_mc, breaks = 30, freq = FALSE, # freq=FALSE for density
main = "Histogram of Mc Sample (Beta Case)", xlab = "x")
curve(dmc(x, gamma = gamma_par, delta = delta_par, lambda = lambda_par),
add = TRUE, col = "red", lwd = 2, n = 201)
curve(stats::dbeta(x, gamma_par, delta_par + 1), add=TRUE, col="blue", lty=2)
legend("topright", legend = c("Theoretical Mc PDF", "Theoretical Beta PDF"),
col = c("red", "blue"), lwd = c(2,1), lty=c(1,2), bty = "n")
# Comparing empirical and theoretical quantiles (Q-Q plot)
lambda_par_qq <- 0.7 # Use lambda != 1 for non-Beta case
x_sample_mc_qq <- rmc(1000, gamma = gamma_par, delta = delta_par,
lambda = lambda_par_qq)
prob_points <- seq(0.01, 0.99, by = 0.01)
theo_quantiles <- qmc(prob_points, gamma = gamma_par, delta = delta_par,
lambda = lambda_par_qq)
emp_quantiles <- quantile(x_sample_mc_qq, prob_points, type = 7)
plot(theo_quantiles, emp_quantiles, pch = 16, cex = 0.8,
main = "Q-Q Plot for Mc Distribution",
xlab = "Theoretical Quantiles", ylab = "Empirical Quantiles (n=1000)")
abline(a = 0, b = 1, col = "blue", lty = 2)
# Compare summary stats with rgkw(..., alpha=1, beta=1, ...)
# Note: individual values will differ due to randomness
x_sample_gkw <- rgkw(1000, alpha = 1.0, beta = 1.0, gamma = gamma_par,
delta = delta_par, lambda = lambda_par_qq)
print("Summary stats for rmc sample:")
print(summary(x_sample_mc_qq))
print("Summary stats for rgkw(alpha=1, beta=1) sample:")
print(summary(x_sample_gkw)) # Should be similar
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.