predictLVs.gllvm: Predict latent variables for gllvm Fits

Description Usage Arguments Details Value Author(s) Examples

Description

Obtains predictions for latent variables from a fitted generalized linear latent variable model object. Currently works only for the variational approximation method.

Usage

1
2
## S3 method for class 'gllvm'
predictLVs(object, newX = NULL, newY = object$y, ...)

Arguments

object

an object of class 'gllvm'.

newX

A new data frame of environmental variables. If omitted, the original matrix of environmental variables is used.

newY

A new response data. Defaults to the dataset used for original model fit.

...

not used.

Details

Obtains predictions for latent variables from a fitted generalized linear latent variable model object.

Value

A matrix containing requested predictor types.

Author(s)

David Warton, Jenni Niku <jenni.m.e.niku@jyu.fi>

Examples

1
2
3
4
5
6
7
8
9
 
# Load a dataset from the mvabund package
data(antTraits)
y <- as.matrix(antTraits$abund)
X <- scale(antTraits$env[, 1:3])
# Fit gllvm model
fit <- gllvm(y = y, X, family = poisson())
# fitted values
predLVs <- predictLVs.gllvm(fit)

gllvm documentation built on July 29, 2021, 1:06 a.m.