BoothHobert: A Logit-Normal GLMM Dataset from Booth and Hobert

Description Usage Format Details References Examples

Description

This data set contains simulated data from the paper of Booth and Hobert referenced below.

Usage

1

Format

A data frame with 3 columns:

y

Response vector.

x1

Fixed effect model matrix. The matrix has just one column vector.

z1

Random effect model matrix. The matrix has just one column vector.

Details

This data set was generated by Booth and Hobert using a single variance component, a single fixed effect, no intercept, and a logit link.

References

Booth, J. G. and Hobert, J. P. (1999). Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal Statistical Society Series B (Statistical Methodology) 61, 265–285.

Examples

1


Search within the glmm package
Search all R packages, documentation and source code

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.