Nothing
###############################################################################################################
###############################################################################################################
#' Compare cross validation fit performances from a nested.glmnetr output.
#'
#' @description
#' Compare cross-validation model fits in terms of average performances from the
#' nested cross validation fits. In general the standard deviations for the
#' performance measures evaluated on the leave-out samples may be biased. While
#' the standard deviations of the paired within fold differences of
#' performances intuitively might be less biased this has not been shown. See
#' the package vignettes for more discussion.
#'
#' @param object A nested.glmnetr output object.
#' @param digits digits for printing of z-scores, p-values, etc. with default of 4
#' @param pow the power to which the average of correlations is to be raised. Only
#' applies to the "gaussian" model. Default is 2 to yield R-square but can be on to
#' show correlations. pow is ignored for the family of "cox" and "binomial".
#' @param type determines what type of nested cross validation performance measures are
#' compared. Possible values are "devrat" to compare the deviance ratios, i.e. the
#' fractional reduction in deviance relative to the null model deviance,
#' "agree" to compare agreement, "lincal" to compare the linear calibration
#' slope coefficients, "intcal" to compare the linear calibration intercept
#' coefficients, from the nested cross validation.
#'
#' @return A printout to the R console.
#'
#' @seealso
#' \code{\link{nested.cis}} , \code{\link{summary.nested.glmnetr}} , \code{\link{nested.glmnetr}}
#'
#' @export
#'
#' @examples
#' \donttest{
#' sim.data=glmnetr.simdata(nrows=1000, ncols=100, beta=NULL)
#' xs=sim.data$xs
#' y_=sim.data$yt
#' event=sim.data$event
#' # for this example we use a small number for folds_n to shorten run time
#' fit3 = nested.glmnetr(xs, NULL, y_, event, family="cox", folds_n=3)
#' nested.compare(fit3)
#' }
#'
nested.compare = function( object, type="devrat", digits=4, pow=1 ) {
if ( (type == "intcal") & (object$sample[1] == 'cox') ) {
cat(" There is no intercept for the Cox model to compare! \n",
" Analysis will not be performed.")
} else if (is.null(object$version[2])) {
cat(" Output object 'glmnetr' version not identified. \n",
" Analysis will not be performed.")
} else {
if (object$version[2] == "glmnetr version 0.5-5 (2024-12-28)") { nested.compare_0_5_3(object, type=type, digits=digits, pow=pow )
} else if (object$version[2] == "glmnetr version 0.5-4 (2024-10-24)") { nested.compare_0_5_3(object, type=type, digits=digits, pow=pow )
} else if (object$version[2] == "glmnetr version 0.5-3 (2024-08-28)") { nested.compare_0_5_3(object, type=type, digits=digits, pow=pow )
} else if (object$version[2] == "glmnetr version 0.5-2 (2024-07-10)") { nested.compare_0_5_2(object, type=type, digits=digits, pow=pow )
} else if (object$version[2] == "glmnetr version 0.5-1 (2024-05-10)") { nested.compare_0_5_1(object, type=type, digits=digits, pow=pow )
} else if (object$version[2] == "glmnetr version 0.4-6 (2024-04-21)") { nested.compare_0_5_1(object, type=type, digits=digits, pow=pow )
} else if (object$version[2] == "glmnetr version 0.4-5 (2024-04-20)") { nested.compare_0_5_1(object, type=type, digits=digits, pow=pow )
} else if (object$version[2] == "0.4-5 dev 240410") { nested.compare_0_5_1(object, type=type, digits=digits, pow=pow )
} else if (object$version[2] == "0.4-4 dev 240322") { nested.compare_0_5_1(object, type=type, digits=digits, pow=pow )
} else if (object$version[2] == "0.4-3") { nested.compare_0_5_1(object, type=type, digits=digits, pow=pow )
} else if (object$version[2] == "0.4-2") {
if (type == "intcal") { cat("\n intcal is not stored for most models")
} else if (type == "devrat") { cat("\n Needed info for devrat is not available\n",
" Analysis will not be performed.")
} else { nested.compare_0_5_1(object, type=type, digits=digits, pow=pow )
}
}
}
}
###############################################################################################################
###############################################################################################################
#' A redirect to nested.compare
#'
#' @description
#' See nested.compare(), as glmnetr.compcv() is depricated
#'
#' @param object A nested.glmnetr output object.
#' @param digits digits for printing of z-scores, p-values, etc. with default of 4
#' @param pow the power to which the average of correlations is to be raised.
#' @param type determines what type of nested cross validation performance measures are
#' compared. Possible values are "devrat" to compare the deviance ratios, i.e. the
#' fractional reduction in deviance relative to the null model deviance,
#' "agree" to compare agreement, "lincal" to compare the linear calibration
#' slope coefficients, "intcal" to compare the linear calibration intercept
#' coefficients, from the nested cross validation.
#'
#' @return A printout to the R console.
#'
#' @seealso
#' \code{\link{nested.compare}}
#'
#' @export
#'
glmnetr.compcv = function(object, digits=4, type="devrat", pow=1) {
nested.compare(object, type, digits, pow)
}
###############################################################################################################
###############################################################################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.