Nothing
###############################################################################################################
###############################################################################################################
#' Calculate performance differences with CI and p
#'
#' @description
#' Perform a paired t-test as called from nested.compare().
#'
#' @param a One term
#' @param b A second term
#' @param digits digits for printing of z-scores, p-values, etc. with default of 4
#' @param txt 1 (default) to include inline text for estimated, 95 percent CI and p
#' @param pow Power to which the average of correlations is to be raised. Only
#' applies to the "gaussian" model. Default is 2 to yield R-square but can be on to
#' show correlations. Pow is ignored for the family of "cox" and "binomial".
#'
#' @return An estimate, 95% CI and p for agreement comparison
#'
#' @importFrom stats t.test qt pt var
#'
#' @noRd
#'
nested.compare0_0_5_2 = function(a, b, pow=1, bootstrap=0, digits=4, txt=0) {
if ( pow != 2) { pow = 1 }
if (pow == 1) {
dff = (a-b)[!is.na(a-b)]
meandiff = mean(dff)
n_ = length(dff)
if (bootstrap == 0) {
se = sd(dff)/sqrt(n_)
} else if (bootstrap >= 1) {
se = sd(dff)
}
lo = meandiff - qt(0.975,df=(n_-1))*se
up = meandiff + qt(0.975,df=(n_-1))*se
t_ = meandiff/se
p_ = 2*pt(-abs(t_), df=(n_-1))
} else if ( pow == 2) {
n_ = length(a)
deltalo1 = rep(0,n_)
for ( i_ in c(1:n_)) {
deltalo1[i_] = mean(a[-i_])^2 - mean(b[-i_])^2
}
deltasd = sqrt( (n_+1) * var(deltalo1) )
corr1 = mean(a)
corr2 = mean(b)
mean = mean(a)^2 - mean(b)^2
qt_ = qt(0.975,(n_-1))
lo = mean - qt_ * deltasd
up = mean + qt_ * deltasd
t_ = mean / deltasd
p_ = 2*pt(-abs(t_), df=(n_-1))
}
if (txt==1) {
cat ( paste0( " estimate (95% CI): ", round(meandiff, digits=digits), " (", round(lo, digits=digits), ", ",
round(up, digits=digits), ") , p=", round(p_, digits=digits) ) )
} else {
cat ( paste0( round(meandiff, digits=digits), " (", round(lo, digits=digits), ", ",
round(up, digits=digits), ") ", round(p_, digits=digits) ) )
}
# if ( pow == 2) {cat(" --", corr1, " - ", corr2)}
}
###############################################################################################################
###############################################################################################################
#' Compare cross validation fit performances from a nested.glmnetr output.
#'
#' @description
#' Compare cross-validation model fits in terms of average performances from the
#' nested cross validation fits.
#'
#' @param object A nested.glmnetr output object.
#' @param digits digits for printing of z-scores, p-values, etc. with default of 4
#' @param pow the power to which the average of correlations is to be raised. Only
#' applies to the "gaussian" model. Default is 2 to yield R-square but can be on to
#' show correlations. pow is ignored for the family of "cox" and "binomial".
#' @param type determines what type of nested cross validation performance measures are
#' compared. Possible values are "devrat" to compare the deviance ratios, i.e. the
#' fractional reduction in deviance relative to the null model deviance,
#' "agree" to compare agreement, "lincal" to compare the linear calibration
#' slope coefficients, "intcal" to compare the linear calibration intercept
#' coefficients, from the nested cross validation.
#'
#' @return A printout to the R console.
#'
#' @noRd
#'
nested.compare_0_5_2 = function(object, type="devrat", digits=4, pow=1) {
family = object$sample[1]
tuning = object$tuning
bootstrap = tuning[8]
fits = object$fits
dolasso = fits[1]
doxgb = fits[2]
dorf = fits[3]
dorpart = fits[4]
doann = fits[5]
dostep = fits[6]
doaic = fits[7]
doorf = fits[8]
if (is.na(doorf)) { doorf = 0 }
ensemble = object$ensemble
if (!(type %in% c('devrat','devian','intcal','lincal','agree'))) { type = 'devrat'}
m2.ll.null = object$null.m2LogLik.rep
m2.ll.sat = object$sat.m2LogLik.rep
n__ = object$n.rep
if (dolasso == 1) {
if (type == "agree") {
lasso.perf.rep = object$lasso.agree.rep
} else if (type == "devrat") {
object1 = object$lasso.devian.rep
devratl = list()
for (j_ in c(1:dim(object1)[2])) {
devratl[[j_]] = devrat_(object1[,j_], m2.ll.null, m2.ll.sat, n__ ) ; object1[,j_] = devratl[[j_]][[1]]
}
lasso.perf.rep = object1
} else if (type == "devian") { lasso.perf.rep = object$lasso.devian.rep
} else if (type == "lincal") { lasso.perf.rep = object$lasso.lincal.rep
} else if (type == "intcal") { lasso.perf.rep = object$lasso.intcal.rep }
}
if (doxgb == 1) {
if (type == "agree") {
xgb.perf.rep = object$xgb.agree.rep
} else if (type == "devrat") {
object1 = object$xgb.devian.rep
devratl = list()
for (j_ in c(1:dim(object1)[2])) {
devratl[[j_]] = devrat_(object1[,j_], m2.ll.null, m2.ll.sat, n__ ) ; object1[,j_] = devratl[[j_]][[1]]
}
xgb.perf.rep = object1
} else if (type == "devian") { xgb.perf.rep = object$xgb.devian.rep
} else if (type == "lincal") { xgb.perf.rep = object$xgb.lincal.rep
} else if (type == "intcal") { xgb.perf.rep = object$xgb.intcal.rep }
}
if (dorf == 1) {
if (type == "agree") {
rf.perf.rep = object$rf.agree.rep
} else if (type == "devrat") {
object1 = object$rf.devian.rep
devratl = list()
for (j_ in c(1:dim(object1)[2])) {
devratl[[j_]] = devrat_(object1[,j_], m2.ll.null, m2.ll.sat, n__ ) ; object1[,j_] = devratl[[j_]][[1]]
}
rf.perf.rep = object1
} else if (type == "devian") { rf.perf.rep = object$rf.devian.rep
} else if (type == "lincal") { rf.perf.rep = object$rf.lincal.rep
} else if (type == "intcal") { rf.perf.rep = object$rf.intcal.rep }
}
if (doorf == 1) {
if (type == "agree") {
orf.perf.rep = object$orf.agree.rep
} else if (type == "devrat") {
object1 = object$orf.devian.rep
devratl = list()
for (j_ in c(1:dim(object1)[2])) {
devratl[[j_]] = devrat_(object1[,j_], m2.ll.null, m2.ll.sat, n__ ) ; object1[,j_] = devratl[[j_]][[1]]
}
orf.perf.rep = object1
} else if (type == "devian") { orf.perf.rep = object$orf.devian.rep
} else if (type == "lincal") { orf.perf.rep = object$orf.lincal.rep
} else if (type == "intcal") { orf.perf.rep = object$orf.intcal.rep }
}
if (doann == 1) {
if (type == "agree") {
ann.perf.rep = object$ann.agree.rep
} else if (type == "devrat") {
object1 = object$ann.devian.rep
devratl = list()
for (j_ in c(1:dim(object1)[2])) {
devratl[[j_]] = devrat_(object1[,j_], m2.ll.null, m2.ll.sat, n__ ) ; object1[,j_] = devratl[[j_]][[1]]
}
ann.perf.rep = object1
} else if (type == "devian") { ann.perf.rep = object$ann.devian.rep
} else if (type == "lincal") { ann.perf.rep = object$ann.lincal.rep
} else if (type == "intcal") { ann.perf.rep = object$ann.intcal.rep }
}
if (dorpart == 1) {
if (type == "agree") {
rpart.perf.rep = object$rpart.agree.rep
} else if (type == "devrat") {
object1 = object$rpart.devian.rep
devratl = list()
for (j_ in c(1:dim(object1)[2])) {
devratl[[j_]] = devrat_(object1[,j_], m2.ll.null, m2.ll.sat, n__ ) ; object1[,j_] = devratl[[j_]][[1]]
}
rpart.perf.rep = object1
} else if (type == "devian") { rpart.perf.rep = object$rpart.devian.rep
} else if (type == "lincal") { rpart.perf.rep = object$rpart.lincal.rep
} else if (type == "intcal") { rpart.perf.rep = object$rpart.intcal.rep }
}
if (dostep == 1) {
if (type == "agree") {
step.perf.rep = object$step.agree.rep
} else if (type == "devrat") {
object1 = object$step.devian.rep
devratl = list()
for (j_ in c(1:dim(object1)[2])) {
devratl[[j_]] = devrat_(object1[,j_], m2.ll.null, m2.ll.sat, n__ ) ; object1[,j_] = devratl[[j_]][[1]]
}
step.perf.rep = object1
} else if (type == "devian") { step.perf.rep = object$step.devian.rep
} else if (type == "lincal") { step.perf.rep = object$step.lincal.rep
} else if (type == "intcal") { step.perf.rep = object$step.intcal.rep }
}
# pow = 1
if (type == "agree") {
if (family == "gaussian") {
if (pow == 2) {
pm = "** R-square **"
} else {
pow = 1
pm = "** Correlation **"
}
} else if (family %in% c("cox","binomial")) {
pow = 1
pm = "** Concordance **"
}
} else if (type=="devrat") {
pm = "** Deviance Ratio **"
} else if (type=="devian") {
pm = "** Deviance **"
} else if (type=="lincal") {
pm = "** linear calibration slope **"
} else if (type=="intcal") {
pm = "** linear calibration intercept **"
}
# if ( pow == 2 ) { gagree = "R-square" } else { gagree = "Correlation" }
# if (family %in% c("cox","binomial")) { gagree = "Concordance" ; pow = 1 }
if (sum(ensemble[c(2:8)]) > 0 ) {
cat (" Ensemble option used when fitting models : ")
# ensemble\n" )
cat(paste0("(", ensemble[1],",", ensemble[2],",", ensemble[3],",", ensemble[4],", ",
ensemble[5],",", ensemble[6],",", ensemble[7],",", ensemble[8],")\n\n"))
}
if ( ensemble[c(1)] == 0 ) {
cat ("\n Simple models with information from losso not run. Output is abbreviated. \n\n" )
doxgb = 0 ; dorf = 0 ; doorf = 0 ; doann = 0 ; dorpart = 0 ; dostep = 0 ; doaic = 0 ;
}
cat (" Model performance comparison in terms of", pm, "\n\n" )
cat (" Comparison estimate (95% CI) p\n")
if (dolasso == 1) {
cat ("\n lasso.minR - lasso.min ") ; nested.compare0_0_5_2(lasso.perf.rep[,4] , lasso.perf.rep[,2], pow, bootstrap, digits)
cat ("\n lasso.minR - lasso.minR0 ") ; nested.compare0_0_5_2(lasso.perf.rep[,4] , lasso.perf.rep[,6], pow, bootstrap, digits)
cat ("\n lasso.min - lasso.minR0 ") ; nested.compare0_0_5_2(lasso.perf.rep[,2] , lasso.perf.rep[,6], pow, bootstrap, digits)
cat("\n")
}
# print(xgb.perf.rep)
if (doxgb == 1) {
cat ("\n XGBoost (tuned) - XGBoost (simple) ") ; nested.compare0_0_5_2(xgb.perf.rep[,4] , xgb.perf.rep[,1], pow, bootstrap, digits)
if (sum(ensemble[c(2,6)])> 0) {
cat ("\n XGBoost (tuned) lasso feature - no feature ") ; nested.compare0_0_5_2(xgb.perf.rep[,5] , xgb.perf.rep[,4], pow, bootstrap, digits)
}
if (sum(ensemble[c(3,4,7,8)])> 0) {
cat ("\n XGBoost (tuned) lasso offset - no offset ") ; nested.compare0_0_5_2(xgb.perf.rep[,6] , xgb.perf.rep[,4], pow, bootstrap, digits)
}
cat("\n")
}
if (dorf == 1) {
lr = 0
if (sum(ensemble[c(2,6)])> 0) {
cat ("\n RF with lasso feature - no feature ") ; nested.compare0_0_5_2(rf.perf.rep[,2] , rf.perf.rep[,1], pow, bootstrap, digits)
lr = 1
}
if ((sum(ensemble[c(3,4,7,8)])> 0) & (family == "gaussian")) {
cat ("\n RF with lasso offset - no offset ") ; nested.compare0_0_5_2(rf.perf.rep[,3] , rf.perf.rep[,1], pow, bootstrap, digits)
lr = 1
}
if (lr == 1) { cat("\n") }
}
if (doorf == 1) {
lr = 0
if (sum(ensemble[c(2,6)])> 0) {
cat ("\n ORF with lasso feature - no feature ") ; nested.compare0_0_5_2(orf.perf.rep[,2] , orf.perf.rep[,1], pow, bootstrap, digits)
lr = 1
}
if ((sum(ensemble[c(3,4,7,8)])> 0) & (family == "gaussian")) {
cat ("\n ORF with lasso offset - no offset ") ; nested.compare0_0_5_2(orf.perf.rep[,3] , orf.perf.rep[,1], pow, bootstrap, digits)
lr = 1
}
if (lr == 1) { cat("\n") }
}
if (doann == 1) {
lr = 0
if (sum(ensemble[6])> 0) {
cat ("\n ANN with with lasso feature - no feature ") ; nested.compare0_0_5_2(ann.perf.rep[,6] , ann.perf.rep[,1], pow, bootstrap, digits) ; lr = 1 ;
} else if (sum(ensemble[2])> 0) {
cat ("\n ANN with with lasso feature - no feature ") ; nested.compare0_0_5_2(ann.perf.rep[,2] , ann.perf.rep[,1], pow, bootstrap, digits) ; lr = 1 ;
}
if (sum(ensemble[8])> 0) {
cat ("\n ANN with with lasso offset - no offset ") ; nested.compare0_0_5_2(ann.perf.rep[,8] , ann.perf.rep[,1], pow, bootstrap, digits) ; lr = 1 ;
} else if (sum(ensemble[7])> 0) {
cat ("\n ANN with with lasso offset - no offset ") ; nested.compare0_0_5_2(ann.perf.rep[,7] , ann.perf.rep[,1], pow, bootstrap, digits) ; lr = 1 ;
} else if (sum(ensemble[4])> 0) {
cat ("\n ANN with with lasso offset - no offset ") ; nested.compare0_0_5_2(ann.perf.rep[,4] , ann.perf.rep[,1], pow, bootstrap, digits) ; lr = 1 ;
} else if (sum(ensemble[3])> 0) {
cat ("\n ANN with with lasso offset - no offset ") ; nested.compare0_0_5_2(ann.perf.rep[,3] , ann.perf.rep[,1], pow, bootstrap, digits) ; lr = 1 ;
}
if (lr == 1) { cat("\n") }
}
if (dostep == 1) {
cat ("\n step (df) - step (p) ") ; nested.compare0_0_5_2(step.perf.rep[,1] , step.perf.rep[,2], pow, bootstrap, digits) ; cat("\n")
}
# cat("\n")
if ((dolasso == 1) & (doxgb == 1)) {
cat ("\n lasso.minR - XGB (tuned) ") ; nested.compare0_0_5_2(lasso.perf.rep[,4] , xgb.perf.rep[,4], pow, bootstrap, digits)
if (sum(ensemble[c(2,6)])> 0) {
cat ("\n lasso.minR - XGB with lasso feature ") ; nested.compare0_0_5_2(lasso.perf.rep[,4] , xgb.perf.rep[,5], pow, bootstrap, digits)
}
if (sum(ensemble[c(3,4,7,8)])> 0) {
cat ("\n lasso.minR - XGB with lasso offset ") ; nested.compare0_0_5_2(lasso.perf.rep[,4] , xgb.perf.rep[,6], pow, bootstrap, digits)
}
}
if ((dolasso == 1) & (dorf == 1)) {
cat ("\n lasso.minR - Random Forest ") ; nested.compare0_0_5_2(lasso.perf.rep[,4] , rf.perf.rep[,1], pow, bootstrap, digits)
if (sum(ensemble[c(2,6)])> 0) {
cat ("\n lasso.minR - RF with lasso feature ") ; nested.compare0_0_5_2(lasso.perf.rep[,4] , rf.perf.rep[,2], pow, bootstrap, digits)
}
if ( (sum(ensemble[c(3,4,7,8)])> 0) & (family == "gaussian") ) {
cat ("\n lasso.minR - RF with lasso offset ") ; nested.compare0_0_5_2(lasso.perf.rep[,4] , rf.perf.rep[,3], pow, bootstrap, digits)
}
}
if ((dolasso == 1) & (doorf == 1)) {
cat ("\n lasso.minR - Oblique Random Forest ") ; nested.compare0_0_5_2(lasso.perf.rep[,4] , orf.perf.rep[,1], pow, bootstrap, digits)
if (sum(ensemble[c(2,6)])> 0) {
cat ("\n lasso.minR - ORF with lasso feature ") ; nested.compare0_0_5_2(lasso.perf.rep[,4] , orf.perf.rep[,2], pow, bootstrap, digits)
}
if ( (sum(ensemble[c(3,4,7,8)])> 0) & (family == "gaussian") ) {
cat ("\n lasso.minR - ORF with lasso offset ") ; nested.compare0_0_5_2(lasso.perf.rep[,4] , orf.perf.rep[,3], pow, bootstrap, digits)
}
}
if ((dolasso == 1) & (doann == 1)) {
cat ("\n lasso.minR - ANN ") ; nested.compare0_0_5_2(lasso.perf.rep[,4] , ann.perf.rep[,1], pow, bootstrap, digits)
if (ensemble[6]) {
cat ("\n lasso.minR - ANN l lasso feature ") ; nested.compare0_0_5_2(lasso.perf.rep[,4] , ann.perf.rep[,6], pow, bootstrap, digits)
} else if (ensemble[2]) {
cat ("\n lasso.minR - ANN lasso feature ") ; nested.compare0_0_5_2(lasso.perf.rep[,4] , ann.perf.rep[,2], pow, bootstrap, digits)
}
if (ensemble[8]) {
cat ("\n lasso.minR - ANN l lasso offset (upated) ") ; nested.compare0_0_5_2(lasso.perf.rep[,4] , ann.perf.rep[,8], pow, bootstrap, digits)
} else if (ensemble[4]) {
cat ("\n lasso.minR - ANN lasso offset ") ; nested.compare0_0_5_2(lasso.perf.rep[,4] , ann.perf.rep[,4], pow, bootstrap, digits)
} else if (ensemble[7]) {
cat ("\n lasso.minR - ANN l lasso offset (upated) ") ; nested.compare0_0_5_2(lasso.perf.rep[,4] , ann.perf.rep[,7], pow, bootstrap, digits)
} else if (ensemble[3]) {
cat ("\n lasso.minR - ANN lasso offset ") ; nested.compare0_0_5_2(lasso.perf.rep[,4] , ann.perf.rep[,3], pow, bootstrap, digits)
}
}
if (dolasso) { cat("\n") }
if ((doxgb == 1) & (dorf == 1)) {
cat ("\n XGBoost (tuned) - RF ") ; nested.compare0_0_5_2(xgb.perf.rep[,4] , rf.perf.rep[,1], pow, bootstrap, digits)
if (sum(ensemble[c(2,6)]) > 0) {
cat ("\n XGBoost lasso feature-RF with lasso feature ") ; nested.compare0_0_5_2(xgb.perf.rep[,5] , rf.perf.rep[,2], pow, bootstrap, digits)
}
if ( (sum(ensemble[c(3,4,7,8)]) > 0) & (family == "gaussian") ) {
cat ("\n XGBoost lasso offset- RF with lasso offset ") ; nested.compare0_0_5_2(xgb.perf.rep[,6] , rf.perf.rep[,3], pow, bootstrap, digits)
}
}
if ((doxgb == 1) & (doorf == 1)) {
cat ("\n XGBoost (tuned) - ORF ") ; nested.compare0_0_5_2(xgb.perf.rep[,4] , orf.perf.rep[,1], pow, bootstrap, digits)
if (sum(ensemble[c(2,6)]) > 0) {
cat ("\n XGBoost lasso feature-ORF with lasso feature") ; nested.compare0_0_5_2(xgb.perf.rep[,5] , orf.perf.rep[,2], pow, bootstrap, digits)
}
if ( (sum(ensemble[c(3,4,7,8)]) > 0) & (family == "gaussian") ) {
cat ("\n XGBoost lasso offset- ORF with lasso offset") ; nested.compare0_0_5_2(xgb.perf.rep[,6] , orf.perf.rep[,3], pow, bootstrap, digits)
}
}
if ((doxgb == 1) & (doann == 1)) {
cat ("\n XGBoost (tuned) - ANN ") ; nested.compare0_0_5_2(xgb.perf.rep[,4] , ann.perf.rep[,1], pow, bootstrap, digits)
if (ensemble[6]) {
cat ("\n XGBoost lasso feature - ANN, l lasso feature ") ; nested.compare0_0_5_2(xgb.perf.rep[,5] , ann.perf.rep[,6], pow, bootstrap, digits)
} else if (ensemble[2]) {
cat ("\n XGBoost lasso feature - ANN lasso feature ") ; nested.compare0_0_5_2(xgb.perf.rep[,5] , ann.perf.rep[,2], pow, bootstrap, digits)
}
if (family == "gaussian") {
if (ensemble[8]) {
cat ("\n XGBoost lasso offset-ANN l lasso offset(upated) ") ; nested.compare0_0_5_2(xgb.perf.rep[,6] , ann.perf.rep[,8], pow, bootstrap, digits)
} else if (ensemble[4]) {
cat ("\n XGBoost lasso offset - ANN, lasso offset ") ; nested.compare0_0_5_2(xgb.perf.rep[,6] , ann.perf.rep[,4], pow, bootstrap, digits)
} else if (ensemble[7]) {
cat ("\n XGBoost lasso offset - ANN l lasso offset ") ; nested.compare0_0_5_2(xgb.perf.rep[,6] , ann.perf.rep[,7], pow, bootstrap, digits)
} else if (ensemble[3]) {
cat ("\n XGBoost offset - ANN lasso offset ") ; nested.compare0_0_5_2(xgb.perf.rep[,6] , ann.perf.rep[,3], pow, bootstrap, digits)
}
}
}
if (doxgb) { cat("\n") }
if ((dorf == 1) & (doorf == 1)) {
cat ("\n RF - ORF ") ; nested.compare0_0_5_2(rf.perf.rep[,1] , orf.perf.rep[,1], pow, bootstrap, digits)
if (sum(ensemble[c(2,6)]) > 0) {
cat ("\n RF lasso feature - ORF l lasso feature " ) ; nested.compare0_0_5_2(rf.perf.rep[,2] , orf.perf.rep[,2], pow, bootstrap, digits)
}
if (sum(ensemble[c(3,4,7,8)]) > 0) {
cat ("\n RF lasso feature - ORF lasso feature " ) ; nested.compare0_0_5_2(rf.perf.rep[,3] , orf.perf.rep[,3], pow, bootstrap, digits)
}
cat("\n")
}
if ((dorf == 1) & (doann == 1)) {
cat ("\n RF - ANN ") ; nested.compare0_0_5_2(rf.perf.rep[,1] , ann.perf.rep[,1], pow, bootstrap, digits)
if (ensemble[6]) {
cat ("\n RF lasso feature - ANN l lasso feature " ) ; nested.compare0_0_5_2(rf.perf.rep[,2] , ann.perf.rep[,6], pow, bootstrap, digits)
} else if (ensemble[2]) {
cat ("\n RF lasso feature - ANN lasso feature " ) ; nested.compare0_0_5_2(rf.perf.rep[,2] , ann.perf.rep[,2], pow, bootstrap, digits)
}
if (ensemble[8]) {
cat ("\n RF lasso offset - ANN l lasso offset (upated) " ) ; nested.compare0_0_5_2(rf.perf.rep[,3] , ann.perf.rep[,8], pow, bootstrap, digits)
} else if (ensemble[4]) {
cat ("\n RF lasso offset - ANN lasso offset " ) ; nested.compare0_0_5_2(rf.perf.rep[,3] , ann.perf.rep[,4], pow, bootstrap, digits)
} else if (ensemble[7]) {
cat ("\n RF lasso offset - ANN, l lasso offset (upated) " ) ; nested.compare0_0_5_2(rf.perf.rep[,3] , ann.perf.rep[,7], pow, bootstrap, digits)
} else if (ensemble[3]) {
cat ("\n RF lasso offset - ANN, lasso offset " ) ; nested.compare0_0_5_2(rf.perf.rep[,3] , ann.perf.rep[,3], pow, bootstrap, digits)
}
cat("\n")
}
if ((doorf == 1) & (doann == 1)) {
cat ("\n ORF - ANN ") ; nested.compare0_0_5_2(orf.perf.rep[,1] , ann.perf.rep[,1], pow, bootstrap, digits)
if (ensemble[6]) {
cat ("\n ORF lasso feature - ANN l lasso feature " ) ; nested.compare0_0_5_2(orf.perf.rep[,2] , ann.perf.rep[,6], pow, bootstrap, digits)
} else if (ensemble[2]) {
cat ("\n ORF lasso feature - ANN lasso feature " ) ; nested.compare0_0_5_2(orf.perf.rep[,2] , ann.perf.rep[,2], pow, bootstrap, digits)
}
if (ensemble[8]) {
cat ("\n ORF lasso offset - ANN l lasso offset (upated)" ) ; nested.compare0_0_5_2(orf.perf.rep[,3] , ann.perf.rep[,8], pow, bootstrap, digits)
} else if (ensemble[4]) {
cat ("\n ORF lasso offset - ANN lasso offset " ) ; nested.compare0_0_5_2(orf.perf.rep[,3] , ann.perf.rep[,4], pow, bootstrap, digits)
} else if (ensemble[7]) {
cat ("\n ORF lasso offset - ANN, l lasso offset (upated)" ) ; nested.compare0_0_5_2(orf.perf.rep[,3] , ann.perf.rep[,7], pow, bootstrap, digits)
} else if (ensemble[3]) {
cat ("\n ORF lasso offset - ANN, lasso offset " ) ; nested.compare0_0_5_2(orf.perf.rep[,3] , ann.perf.rep[,3], pow, bootstrap, digits)
}
cat("\n")
}
cat("\n")
}
###############################################################################################################
###############################################################################################################
#' A redirect to nested.compare
#'
#' @description
#' See nested.compare(), as glmnetr() is depricated
#'
#' @param object A nested.glmnetr output object.
#' @param digits digits for printing of z-scores, p-values, etc. with default of 4
#' @param pow the power to which the average of correlations is to be raised.
#' @param type determines what type of nested cross validation performance measures are
#' compared. Possible values are "devrat" to compare the deviance ratios, i.e. the
#' fractional reduction in deviance relative to the null model deviance,
#' "agree" to compare agreement, "lincal" to compare the linear calibration
#' slope coefficients, "intcal" to compare the linear calibration intercept
#' coefficients, from the nested cross validation.
#'
#' @return A printout to the R console.
#'
#' @export
#'
glmnetr.compcv = function(object, digits=4, type="devrat", pow=1) {
nested.compare(object, digits, type, pow)
}
###############################################################################################################
###############################################################################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.