residuals.gnm | R Documentation |
Computes residuals for a fitted generalized nonlinear model.
## S3 method for class 'gnm'
residuals(
object,
type = c("quantile", "deviance", "pearson"),
standardized = FALSE,
plot.it = FALSE,
identify,
dispersion = NULL,
...
)
object |
a object of the class gnm. |
type |
an (optional) character string giving the type of residuals which should be returned. The available options are: (1) "quantile", (2) "deviance", and (3) "pearson". As default, |
standardized |
an (optional) logical switch indicating if the residuals should be standardized by dividing by the square root of |
plot.it |
an (optional) logical switch indicating if a plot of the residuals versus the fitted values is required. As default, |
identify |
an (optional) integer value indicating the number of individuals to identify on the plot of residuals. This is only appropriate when |
dispersion |
an (optional) value indicating the dispersion parameter estimate that must be used to calculate residuals. |
... |
further arguments passed to or from other methods |
A vector with the observed residuals type type
.
Atkinson A.C. (1985) Plots, Transformations and Regression. Oxford University Press, Oxford.
Davison A.C., Gigli A. (1989) Deviance Residuals and Normal Scores Plots. Biometrika 76, 211-221.
Dunn P.K., Smyth G.K. (1996) Randomized Quantile Residuals. Journal of Computational and Graphical Statistics 5, 236-244.
Pierce D.A., Schafer D.W. (1986) Residuals in Generalized Linear Models. Journal of the American Statistical Association 81, 977-986.
###### Example 1: The effects of fertilizers on coastal Bermuda grass
data(Grass)
fit1 <- gnm(Yield ~ b0 + b1/(Nitrogen + a1) + b2/(Phosphorus + a2) + b3/(Potassium + a3),
family=gaussian(inverse), start=c(b0=0.1,b1=13,b2=1,b3=1,a1=45,a2=15,a3=30), data=Grass)
residuals(fit1, type="quantile", plot.it=TRUE, col="red", pch=20, col.lab="blue",
col.axis="blue", col.main="black", family="mono", cex=0.8)
###### Example 2: Assay of an Insecticide with a Synergist
data(Melanopus)
fit2 <- gnm(Killed/Exposed ~ b0 + b1*log(Insecticide-a1) + b2*Synergist/(a2 + Synergist),
family=binomial(logit), weights=Exposed, start=c(b0=-3,b1=1.2,a1=1.7,b2=1.7,a2=2),
data=Melanopus)
residuals(fit2, type="quantile", plot.it=TRUE, col="red", pch=20, col.lab="blue",
col.axis="blue", col.main="black", family="mono", cex=0.8)
###### Example 3: Developmental rate of Drosophila melanogaster
data(Drosophila)
fit3 <- gnm(Duration ~ b0 + b1*Temp + b2/(Temp-a), family=Gamma(log),
start=c(b0=3,b1=-0.25,b2=-210,a=55), weights=Size, data=Drosophila)
residuals(fit3, type="quantile", plot.it=TRUE, col="red", pch=20, col.lab="blue",
col.axis="blue", col.main="black", family="mono", cex=0.8)
###### Example 4: Radioimmunological Assay of Cortisol
data(Cortisol)
fit4 <- gnm(Y ~ b0 + (b1-b0)/(1 + exp(b2+ b3*lDose))^b4, family=Gamma(identity),
start=c(b0=130,b1=2800,b2=3,b3=3,b4=0.5), data=Cortisol)
residuals(fit4, type="quantile", plot.it=TRUE, col="red", pch=20, col.lab="blue",
col.axis="blue", col.main="black", family="mono", cex=0.8)
###### Example 5: Age and Eye Lens Weight of Rabbits in Australia
data(rabbits)
fit5 <- gnm(wlens ~ b1 - b2/(age + b3), family=Gamma(log),
start=c(b1=5.5,b2=130,b3=35), data=rabbits)
residuals(fit5, type="quantile", plot.it=TRUE, col="red", pch=20, col.lab="blue",
col.axis="blue", col.main="black", family="mono", cex=0.8)
###### Example 6: Calls to a technical support help line
data(calls)
fit6 <- gnm(calls ~ SSlogis(week, Asym, xmid, scal), family=poisson(identity), data=calls)
residuals(fit6, type="quantile", plot.it=TRUE, col="red", pch=20, col.lab="blue",
col.axis="blue", col.main="black", family="mono", cex=0.8)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.