accuracy | Compute accuracy and precision |
ana | Flow anamorphosis transform Compute a transformation that... |
anaBackward | Backward gaussian anamorphosis backward transformation to... |
anaForward | Forward gaussian anamorphosis forward transformation to... |
anis_GSLIBpar2A | Produce anisotropy scaling matrix from angle and anisotropy... |
AnisotropyRangeMatrix | Force a matrix to be anisotropy range matrix, |
AnisotropyScaling | Convert to anisotropy scaling matrix |
as.AnisotropyRangeMatrix | Force a matrix to be anisotropy range matrix, |
as.AnisotropyScaling | Convert to anisotropy scaling matrix |
as.array.DataFrameStack | Convert a stacked data frame into an array |
as.CompLinModCoReg | Recast a model to the variogram model of package... |
as.directorVector | Express a direction as a director vector |
as.function.gmCgram | Convert a gmCgram object to an (evaluable) function |
as.gmCgram | Convert theoretical structural functions to gmCgram format |
as.gmEVario | Convert empirical structural function to gmEVario format |
as.gmSpatialModel | Recast spatial object to gmSpatialModel format |
as.gstat | Convert a regionalized data container to gstat |
as.gstatVariogram | Represent an empirical variogram in "gstatVariogram" format |
as.list.DataFrameStack | Convert a stacked data frame into a list of data.frames |
as.LMCAnisCompo | Recast compositional variogram model to format LMCAnisCompo |
as.logratioVariogram | Recast empirical variogram to format logratioVariogram |
as.logratioVariogramAnisotropy | Convert empirical variogram to "logratioVariogramAnisotropy" |
as.variogramModel | Convert an LMC variogram model to gstat format |
CholeskyDecomposition | Create a parameter set specifying a LU decomposition... |
coloredBiplot.genDiag | Colored biplot for gemeralised diagonalisations Colored... |
constructMask | Constructs a mask for a grid |
DataFrameStack.data.frame | Create a data frame stack |
dimnames.DataFrameStack | Return the dimnames of a DataFrameStack |
DSpars | Create a parameter set specifying a direct sampling algorithm |
EmpiricalStructuralFunctionSpecification-class | Empirical structural function specification |
fit_lmc | Fit an LMC to an empirical variogram |
getMask | Get the mask info out of a spatial data object |
getStackElement | Set or get the i-th data frame of a data.frame stack |
getTellus | Download the Tellus survey data set (NI) |
gmApply | Apply Functions Over Array or DataFrameStack Margins |
gmGaussianMethodParameters-class | parameters for Spatial Gaussian methods of any kind |
gmGaussianSimulationAlgorithm-class | parameters for Gaussian Simulation methods |
gmMPSParameters-class | parameters for Multiple-Point Statistics methods |
gmNeighbourhoodSpecification-class | Neighbourhood description |
gmSimulationAlgorithm-class | Parameter specification for a spatial simulation algorithm |
gmSpatialDataContainer-class | General description of a spatial data container |
gmSpatialMethodParameters-class | Parameter specification for any spatial method |
gmSpatialModel-class | Conditional spatial model data container |
gmTrainingImage-class | MPS training image class |
gmUnconditionalSpatialModel-class | General description of a spatial model |
gmValidationStrategy-class | Validation strategy description |
GridOrNothing-class | Superclass for grid or nothing |
gsi.calcCgram | Compute covariance matrix oout of locations |
gsi.Cokriging | Cokriging of all sorts, internal function |
gsi.CondTurningBands | Internal function, conditional turning bands realisations |
gsi.DS | Workhorse function for direct sampling |
gsi.EVario2D | Empirical variogram or covariance function in 2D |
gsi.EVario3D | Empirical variogram or covariance function in 3D |
gsi.gstatCokriging2compo | Reorganisation of cokriged compositions |
gsi.orig | extract information about the original data, if available |
gsi.produceV | Create a matrix of logcontrasts and name prefix |
gsi.TurningBands | Internal function, unconditional turning bands realisations |
has.missings.data.frame | Check presence of missings check presence of missings in a... |
image_cokriged | Plot an image of gridded data |
image.logratioVariogramAnisotropy | Plot variogram maps for anisotropic logratio variograms |
image.mask | Image method for mask objects |
is.anisotropySpecification | Check for any anisotropy class |
is.isotropic | Check for anisotropy of a theoretical variogram |
KrigingNeighbourhood | Create a parameter set of local for neighbourhood... |
LeaveOneOut | Specify the leave-one-out strategy for validation of a... |
length.gmCgram | Length, and number of columns or rows |
LMCAnisCompo | Create a anisotropic model for regionalized compositions |
logratioVariogram | Empirical logratio variogram calculation |
logratioVariogram-acomp-method | Logratio variogram of a compositional data |
Maf.data.frame | Generalised diagonalisations Calculate several generalized... |
make.gmCompositionalGaussianSpatialModel | Construct a Gaussian gmSpatialModel for regionalized... |
make.gmCompositionalMPSSpatialModel | Construct a Multi-Point gmSpatialModel for regionalized... |
make.gmMultivariateGaussianSpatialModel | Construct a Gaussian gmSpatialModel for regionalized... |
mean.accuracy | Mean accuracy |
mean.spatialDecorrelationMeasure | Average measures of spatial decorrelation |
ModelStructuralFunctionSpecification-class | Structural function model specification |
ndirections | Number of directions of an empirical variogram |
NfoldCrossValidation | Specify a strategy for validation of a spatial model |
NGSAustralia | National Geochemical Survey of Australia: soil data |
noSpatCorr.test | Test for lack of spatial correlation |
pairsmap | Multiple maps Matrix of maps showing different combinations... |
plot.accuracy | Plot method for accuracy curves |
plot.gmCgram | Draw cuves for covariance/variogram models |
plot.gmEVario | Plot empirical variograms |
plot.logratioVariogramAnisotropy | Plot variogram lines of empirical directional logratio... |
plot.swarmPlot | Plotting method for swarmPlot objects |
plus-.gmCgram | Combination of gmCgram variogram structures |
precision | Precision calculations |
predict.genDiag | Predict method for generalised diagonalisation objects |
predict_gmSpatialModel | Predict method for objects of class 'gmSpatialModel' |
predict.LMCAnisCompo | Compute model variogram values Evaluate the variogram model... |
print.mask | Print method for mask objects |
pwlrmap | Compositional maps, pairwise logratios Matrix of maps showing... |
SequentialSimulation | Create a parameter set specifying a gaussian sequential... |
setCgram | Generate D-variate variogram models |
setGridOrder | Set or get the ordering of a grid |
setMask | Set a mask on an object |
sortDataInGrid | Reorder data in a grid |
spatialDecorrelation | Compute diagonalisation measures |
spatialGridAcomp | Construct a regionalized composition / reorder compositional... |
spatialGridRmult | Construct a regionalized multivariate data |
spectralcolors | Spectral colors palette based on the... |
sphTrans | Spherifying transform Compute a transformation that... |
stackDim | Get/set name/index of (non)stacking dimensions |
stackDim-Spatial-method | Get name/index of the stacking dimension of a Spatial object |
sub-.DataFrameStack | Extract rows of a DataFrameStack |
sub-.gmCgram | Subsetting of gmCgram variogram structures |
sub-.logratioVariogramAnisotropy | Subsetting of logratioVariogram objects |
sub-sub-.gmCgram | Subsetting of gmCgram variogram structures |
swarmPlot | Plot a swarm of calculated output through a DataFrameStack |
swath | Swath plots |
TurningBands | Create a parameter set specifying a turning bands simulation... |
unmask.data.frame | Unmask a masked object |
validate | Validate a spatial model |
variogram_gmSpatialModel | Variogram method for gmSpatialModel objects |
variogramModelPlot.gmEVario | Quick plotting of empirical and theoretical variograms Quick... |
variogramModelPlot.gstatVariogram | Quick plotting of empirical and theoretical variograms Quick... |
variogramModelPlot.logratioVariogram | Quick plotting of empirical and theoretical logratio... |
Windarling | Ore composition of a bench at a mine in Windarling, West... |
write.GSLib | Write a regionalized data set in GSLIB format |
xvErrorMeasures.data.frame | Cross-validation errror measures |
xvErrorMeasures.default | Cross-validation errror measures |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.