Nothing
#' Retinopathy
#'
#' The \code{retinopathy} data contains information on persons with retinopathy.
#'
#' @name retinopathy
#' @docType data
#' @format A data frame with 613 observations on the following 5 variables:
#' - RET: RET=1: no retinopathy, RET=2 nonproliferative retinopathy,
#' RET=3 advanced retinopathy or blind
#' - SM: SM=1: smoker, SM=0: non-smoker
#' - DIAB: diabetes duration in years
#' - GH: glycosylated hemoglobin measured in percent
#' - BP: diastolic blood pressure in mmHg
#'
#' @seealso \code{\link{vaso}}, \code{\link{Fishing}}
#' @references
#' Bender and Grouven (1998), Using binary logistic regression models for
#' ordinal data with non-proportional odds, \emph{J. Clin. Epidemiol.},
#' 51, 809-816.
#'
#' @keywords dataset
NULL
#' Vasoconstriction and Breathing
#'
#' A binary data on the neural constriction of vasculature. Three test persons
#' inhaled a certain amount of air with different rates. In some cases a
#' vasoconstriction occurred at their skin. The objective of the study was to
#' indicate a correlation between breathing and vasoconstriction.
#' The test persons repeated the test 9, 8, 22 times, making a total of
#' 39 observations.
#'
#' @name vaso
#' @docType data
#' @format A data frame with 39 observations on the following 3 variables:
#' - vol: amount of air
#' - rate: rate of breathing
#' - vaso: condition of vasculature: no vasoconstriction = 1, vasoconstriction = 2
#'
#' @seealso \code{\link{retinopathy}}, \code{\link{Fishing}}
#' @source
#' Data Archive Department of Statistics, LMU Munich.
#'
#' @references
#' Finney, D. J. (1971) \emph{Probit Analysis}. 3rd edition. Cambridge
#' University Press.
#'
#' Pregibon, D. (1982) Resistant fits for some commonly used logistic models.
#' Appl. Stat. \bold{29}, 15--24.
#'
#' Hastie, T. J. and Tibshirani, R. J. (1990) \emph{Generalized Additve Models}.
#' Chapman and Hall.
#'
#' @keywords dataset
#'
NULL
#' Choice of Fishing Mode
#'
#' A sample of 1182 individuals in the United-States for the choice of
#' 4 alternative fishing modes.
#'
#' @name Fishing
#' @docType data
#' @format A data frame containing :
#'
#' - mode: recreation mode choice, one of : beach, pier, boat and charter,
#' - price.beach: price for beach mode
#' - price.pier: price for pier mode,
#' - price.boat: price for private boat mode,
#' - price.charter: price for charter boat mode,
#' - catch.beach: catch rate for beach mode,
#' - catch.pier: catch rate for pier mode,
#' - catch.boat: catch rate for private boat mode,
#' - catch.charter: catch rate for charter boat mode,
#' - income: monthly income,
#'
#' @seealso \code{\link{retinopathy}}, \code{\link{vaso}}
#' @source
#' Cameron A, Trivedi P (2005). Microeconometrics. Cambridge University Press.
#' https://EconPapers.repec.org/RePEc:cup:cbooks:9780521848053.
#'
#' @references
#' Herriges JA, Kling CL (1999). “Nonlinear Income Effects in Random Utility
#' Models.” The Review of Economics and Statistics, 81(1), 62-72.
#' doi: 10.1162/003465399767923827
#'
#' @keywords dataset
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.