knitr::opts_chunk$set( comment = "#>" )
library(gofreg)
The package offers several models (mostly GLMs) that can be used for parametric regression and a subsequent goodness-of-fit test. However, there might be other models that the user wishes to use in their analysis. In the following, we will describe how custom models can be defined and used along with the package.
ParamRegrModel
Whenever the user wants to define a new model, they have to create an R6 class
inheriting from the abstract base class ParamRegrModel
. In particular, the
following methods have to be implemented:
f_yx()
evaluating the conditional density functionF_yx()
evaluating the conditional distribution functionF1_yx()
evaluating the conditional quantile functionmean_yx()
evaluating the regression function $(\mathbb{E}[Y|X=x])$sample_yx()
generating a sample of response variables according to the
conditional distributionfit()
handling the shape of the params
argument and applying the
fit()
-method of the abstract base classIt is recommended to check the correct shape of the params
argument in all
five methods above. Usually, it is a list()
with tags corresponding to the
model parameters.
Important note: When evaluating the likelihood function, f_yx
(and F_yx
as well in case of censored data) will be called with the argument params
being a plain numeric vector instead of a list. This case should be minded in
the checks at the beginning of these methods.
In the following example, we will define a new model of the form $(Y|X) \sim \mathcal{N}(\mu(X), \sigma(X))$ with $\mu(X) = a + e^{b^T x}$ and $\sigma(X) = c^T x^2$ (where the squaring is performed element-wise).
CustomModel <- R6::R6Class( classname = "CustomModel", inherit = ParamRegrModel, public = list( f_yx = function(t, x, params = private$params) { if (checkmate::test_atomic_vector(params)) { # reshape plain numeric vector into list with appropriate tags xcol <- ncol(as.matrix(x)) checkmate::assert_atomic_vector(params, len = 1 + 2 * xcol) params <- list(a = params[1], b = params[2:(1+xcol)], c = params[(2+xcol):(1+2*xcol)]) } else { private$check_params(params, x) } dnorm(t, mean = self$mean_yx(x, params), sd = as.matrix(x)^2 %*% params$c) }, F_yx = function(t, x, params = private$params) { if (checkmate::test_atomic_vector(params)) { # reshape plain numeric vector into list with appropriate tags xcol <- ncol(as.matrix(x)) checkmate::assert_atomic_vector(params, len = 1 + 2 * xcol) params <- list(a = params[1], b = params[2:(1+xcol)], c = params[(2+xcol):(1+2*xcol)]) } else { private$check_params(params, x) } pnorm(t, mean = self$mean_yx(x, params), sd = as.matrix(x)^2 %*% params$c) }, F1_yx = function(t, x, params = private$params) { private$check_params(params, x) qnorm(t, mean = self$mean_yx(x, params), sd = as.matrix(x)^2 %*% params$c) }, sample_yx = function(x, params = private$params) { private$check_params(params, x) rnorm(nrow(as.matrix(x)), mean = self$mean_yx(x, params), sd = as.matrix(x)^2 %*% params$c) }, mean_yx = function(x, params = private$params) { private$check_params(params, x) params$a + exp(as.matrix(x) %*% params$b) }, fit = function(data, params_init = private$params, loglik = loglik_xy, inplace = FALSE) { checkmate::assert_names(names(data), must.include = c("x")) private$check_params(params_init, data$x) params_opt <- super$fit(data, params_init = unlist(params_init, use.names = FALSE), loglik = loglik) xcol <- ncol(as.matrix(x)) params_opt <-list(a = params_opt[1], b = params_opt[2:(1+xcol)], c = params_opt[(2+xcol):(1+2*xcol)]) if (inplace) { private$params <- params_opt invisible(self) } else { params_opt } } ), private = list( check_params = function(params, x) { checkmate::assert_list(params, len = 3) checkmate::assert_names(names(params), identical.to = c("a", "b", "c")) checkmate::assert_vector(params$b, len = ncol(as.matrix(x))) checkmate::assert_vector(params$c, len = ncol(as.matrix(x))) } ) )
Now, let us generate some data following this new model.
set.seed(123) n <- 100 x <- cbind(rnorm(n), runif(n)) model <- CustomModel$new() params_true <- list(a = 0.8, b = c(0.5, 0.7), c = c(0.1, 0.2)) y <- model$sample_yx(x, params_true) data <- dplyr::tibble(x = x, y = y) head(data)
Fitting the model to the generated data should yield good estimates of the model parameters.
model$fit(data, params_init = list(a = 1, b = c(1,1), c = c(1,1)), inplace = TRUE) model$get_params()
Further, a goodness-of-fit test should not reject the (correct) model, i.e. yield a rather high p-value.
gt <- GOFTest$new(data = data, model_fitted = model, test_stat = CondKolmY$new(), nboot = 100) gt$get_pvalue()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.