Description Usage Arguments Details Value Author(s) References See Also Examples
Produces a matrix of plots showing pairwise relationships between quantitative and categorical variables in a complex data set.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | gpairs(x,
upper.pars = list(scatter = "points",
conditional = "barcode",
mosaic = "mosaic"),
lower.pars = list(scatter = "points",
conditional = "boxplot",
mosaic = "mosaic"),
diagonal = "default",
outer.margins = list(bottom = unit(2, "lines"),
left = unit(2, "lines"),
top = unit(2, "lines"),
right = unit(2, "lines")),
xylim = NULL,
outer.labels = NULL, outer.rot = c(0, 90), gap = 0.05,
buffer = 0.02, reorder = NULL, cluster.pars = NULL,
stat.pars = NULL, scatter.pars = NULL,
bwplot.pars = NULL, stripplot.pars = NULL, barcode.pars=NULL,
mosaic.pars = NULL, axis.pars = NULL, diag.pars = NULL,
whatis = FALSE)
corrgram(x)
|
x |
a data frame (or matrix the relationships between whose columns are to be examined). Any combination of quantitative and categorical variables is acceptable. |
upper.pars |
see |
lower.pars |
see |
diagonal |
by default, the diagonal from the top left to the bottom right is used for displaying the variable names (and, in our version, the marginal distributions of the variables); |
outer.margins |
a list of length 4 with units as components named bottom, left, top, and right, giving the outer margins; the default uses two lines of text. A vector of length 4 with units (ordered properly) will work, as will a vector of length 4 with numeric values (interpreted as lines). |
xylim |
optionally specify a single range to be used as |
outer.labels |
the default is |
outer.rot |
a 2-vector (x, y) rotating the top/bottom outer labels |
gap |
the gap between the tiles; defaulting to 0.05 of the width of a tile. |
buffer |
the fraction by which to expand the range of quantitative variables to provide plots that will not truncate plotting symbols. Defaults to 0 percent of range currently. |
reorder |
currently only support for the string |
cluster.pars |
a list with two elements named |
stat.pars |
|
scatter.pars |
|
bwplot.pars |
|
stripplot.pars |
|
barcode.pars |
|
mosaic.pars |
|
axis.pars |
|
diag.pars |
|
whatis |
default is |
In some cases, the graphics device can not be resized after production of the plot because of the way rotation of barcodes is performed.
upper.pars
and lower.pars
are lists possibly containing named elements 'scatter'
, 'conditional'
and 'mosaic'
. Each element of the list is a string implementing the following options: scatter
= exactly one of ('points', 'lm', 'ci', 'symlm', 'loess', 'corrgram', 'stats', 'qqplot')
;
'conditional'
= exactly one of ('boxplot', 'stripplot', 'barcode')
; mosaic='mosaic'
(only option currently implemented).
corrgram()
is just a wrapper to gpairs()
producing a ‘corrgram’ in the style of Michael Friendly.
If whatis=TRUE
, the value is a data frame containing variable names, types, numbers of missing values, numbers of distinct values, precisions, maxima and minima.
John W. Emerson, Walton Green; thanks to Michael Friendly for augmenting the functionality with arguments to strucplot
.
Emerson, John W. (1998) "Mosaic Displays in S-PLUS: A General Implementation and a Case Study." Statistical Computing and Graphics Newsletter Vol. 9,No. 1, 1998.
Basford, K. E. and J. W. Tukey (1999) Graphical Analysis of Multiresponse Data: Illustrated with a Plant Breeding Trial.
Friendly, M. (2000). Visualizing Categorical Data. SAS Press.
Friendly, M., 2002, "Corrgrams: Exploratory displays for correlation matrices." American Statistician 56(4), 316–324.
Green, W. A. (2006) "Loosening the CLAMP: An exploratory graphical approach to the Climate Leaf Analysis Multivariate Program." Palaeontologia Electronica 9(2):9A.
pairs
, splom
, mosaicplot
, strucplot
, bwplot
, barcode
, stripplot
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | allexamples <- FALSE
y <- data.frame(A=c(rep("red", 100), rep("blue", 100)),
B=c(rnorm(100),round(rnorm(100,5,1),1)), C=runif(200),
D=c(rep("big", 150), rep("small", 50)),
E=rnorm(200), stringsAsFactors=TRUE)
gpairs(y)
data(iris)
gpairs(iris)
if (allexamples) {
gpairs(iris, upper.pars = list(scatter = 'stats'),
scatter.pars = list(pch = substr(as.character(iris$Species), 1, 1),
col = as.numeric(iris$Species)),
stat.pars = list(verbose = FALSE))
gpairs(iris, lower.pars = list(scatter = 'corrgram'),
upper.pars = list(conditional = 'boxplot', scatter = 'loess'),
scatter.pars = list(pch = 20))
}
data(Leaves)
gpairs(Leaves[1:10], lower.pars = list(scatter = 'loess'))
if (allexamples) {
gpairs(Leaves[1:10], upper.pars = list(scatter = 'stats'),
lower.pars = list(scatter = 'corrgram'),
stat.pars = list(verbose = FALSE), gap = 0)
corrgram(Leaves[,-33])
}
runexample <- FALSE
if (runexample) {
data(NewHavenResidential)
gpairs(NewHavenResidential)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.