cf | R Documentation |
Functions for initializing the covariance functions which can then be passed
to gp_init
. See section Details for explanation of what covariance
function is what.
cf_const(magn = 1, prior_magn = prior_logunif()) cf_lin(vars = NULL, magn = 1, prior_magn = prior_logunif(), normalize = FALSE) cf_sexp( vars = NULL, lscale = 0.3, magn = 1, prior_lscale = prior_logunif(), prior_magn = prior_logunif(), normalize = FALSE ) cf_matern32( vars = NULL, lscale = 0.3, magn = 1, prior_lscale = prior_logunif(), prior_magn = prior_logunif(), normalize = FALSE ) cf_matern52( vars = NULL, lscale = 0.3, magn = 1, prior_lscale = prior_logunif(), prior_magn = prior_logunif(), normalize = FALSE ) cf_nn( vars = NULL, sigma0 = 1, sigma = 3, magn = 1, prior_sigma0 = prior_half_t(), prior_sigma = prior_half_t(), prior_magn = prior_logunif(), normalize = TRUE ) cf_periodic( vars = NULL, period = 1, cf_base = cf_sexp(), prior_period = prior_logunif() ) cf_prod(...) ## S3 method for class 'cf' cf1 * cf2
magn |
Initial value for the magnitude hyperparameter (depicts the magnitude of the variation captured by the given covariance function). |
prior_magn |
Prior for hypeparameter |
vars |
Indices of the inputs which are taken into account when calculating this covariance. If the input matrix has named columns, can also be a vector of column names. Default is all the inputs. |
normalize |
Whether to automatically scale and center the inputs for the given covariance function. Can be useful for inputs with mean and variance far from 0 and 1, respectively. |
lscale |
Initial value for the length-scale hyperparameter. |
prior_lscale |
Prior for hyperparameter |
sigma0 |
Prior std for the bias in the neural network covariance function. |
sigma |
Prior std for the weights in the hidden layers of the neural network covariance function. |
prior_sigma0 |
Prior for hyperparameter |
prior_sigma |
Prior for hyperparameter |
period |
Period length for the periodic covariance function. |
cf_base |
Base covariance function that is used to model the variability within each period in periodic covariance function. |
prior_period |
Prior for hyperparameter |
... |
Meaning depends on context. For |
cf1 |
Instance of a covariance function. |
cf2 |
Instance of a covariance function. |
The supported covariance functions are (see Rasmussen and Williams, 2006):
cf_const
Constant covariance function. Can be used to model the intercept.
cf_lin
Linear covariance function. Produces linear functions.
cf_sexp
Squared exponential (or exponentiated quadratic, or Gaussian) covariance function.
cf_matern32
Matern nu=3/2 covariance function.
cf_matern52
Matern nu=5/2 covariance function.
cf_nn
Neural network covariance function.
cf_periodic
Periodic covariance function. The periodicity is achieved by mapping the original inputs through sine and cosine functions, and then applying the base kernel in this new space.
cf_prod
Product of two or more covariance functions.
The covariance function object.
Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian processes for machine learning. MIT Press.
# Generate some toy data set.seed(1242) n <- 50 x <- matrix(rnorm(n * 3), nrow = n) f <- sin(x[, 1]) + 0.5 * x[, 2]^2 + x[, 3] y <- f + 0.5 * rnorm(n) x <- data.frame(x1 = x[, 1], x2 = x[, 2], x3 = x[, 3]) # Basic usage (single covariance function) cf <- cf_sexp() lik <- lik_gaussian() gp <- gp_init(cf, lik) gp <- gp_optim(gp, x, y) plot(gp_pred(gp, x)$mean, y) # More than one covariance function; one for x1 and x2, and another one for x3 cf1 <- cf_sexp(c("x1", "x2")) cf2 <- cf_lin("x3") cfs <- list(cf1, cf2) lik <- lik_gaussian() gp <- gp_init(cfs, lik) gp <- gp_optim(gp, x, y, maxiter = 500) plot(gp_pred(gp, x)$mean, y) plot(x[, 3], gp_pred(gp, x, cfind = 2)$mean) # plot effect w.r.t x3 only
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.