basePlot | Plot a contour of the 2D Gaussian distribution with... |
cmpndKernParamInit | CMPND kernel parameter initialisation. |
cmpndNoiseParamInit | CMPND noise parameter initialisation. |
demAutoOptimiseGp | Gaussian Process Optimisation Demo |
demGpCov2D | Gaussian Process 2D Covariance Demo |
demGpSample | Gaussian Process Sampling Demo |
demInterpolation | Gaussian Process Interpolation Demo |
demOptimiseGp | Gaussian Process Optimisation Demo |
demRegression | Gaussian Process Regression Demo |
expTransform | Constrains a parameter. |
gaussianNoiseOut | Compute the output of the GAUSSIAN noise given the input mean... |
gaussianNoiseParamInit | GAUSSIAN noise parameter initialisation. |
gaussSamp | Sample from a Gaussian with a given covariance. |
gpBlockIndices | Return indices of given block. |
gpComputeAlpha | Update the vector 'alpha' for computing posterior mean... |
gpComputeM | Compute the matrix m given the model. |
gpCovGrads | Sparse objective function gradients wrt Covariance functions... |
gpCovGradsTest | Test the gradients of the likelihood wrt the covariance. |
gpCreate | Create a GP model with inducing variables/pseudo-inputs. |
gpDataIndices | Return indices of present data. |
gpExpandParam | Expand a parameter vector into a GP model. |
gpExtractParam | Extract a parameter vector from a GP model. |
gpGradient | Gradient wrapper for a GP model. |
gpLogLikeGradients | Compute the gradients for the parameters and X. |
gpLogLikelihood | Compute the log likelihood of a GP. |
gpMeanFunctionGradient | Compute the log likelihood gradient wrt the scales. |
gpObjective | Wrapper function for GP objective. |
gpOptimise | Optimise the inducing variable based kernel. |
gpOptions | Return default options for GP model. |
gpOut | Evaluate the output of an Gaussian process model. |
gpPlot | Gaussian Process Plotter |
gpPosteriorMeanVar | Mean and variances of the posterior at points given by X. |
gpPosteriorSample | Plot Samples from a GP Posterior. |
gpSample | Plot Samples from a GP. |
gpScaleBiasGradient | Compute the log likelihood gradient wrt the scales. |
gpTest | Test the gradients of the gpCovGrads function and the gp... |
gpUpdateAD | Update the representations of A and D associated with the... |
gpUpdateKernels | Update the kernels that are needed. |
kernCompute | Compute the kernel given the parameters and X. |
kernCreate | Initialise a kernel structure. |
kernDiagGradient | Compute the gradient of the kernel's parameters for the... |
kernDiagGradX | Compute the gradient of the kernel wrt X. |
kernGradient | Compute the gradient wrt the kernel parameters. |
kernParamInit | Kernel parameter initialisation. |
kernTest | Run some tests on the specified kernel. |
modelDisplay | Display a model. |
modelExpandParam | Update a model structure with new parameters or update the... |
modelExtractParam | Extract the parameters of a model. |
modelGradient | Model log-likelihood/objective error function and its... |
modelGradientCheck | Check gradients of given model. |
modelOut | Give the output of a model for given X. |
modelOutputGrad | Compute derivatives with respect to params of model outputs. |
multiKernParamInit | MULTI kernel parameter initialisation. |
noiseCreate | Initialise a noise structure. |
noiseOut | Give the output of the noise model given the mean and... |
noiseParamInit | Noise model's parameter initialisation. |
optimiDefaultConstraint | Returns function for parameter constraint. |
rbfKernDiagGradX | Gradient of RBF kernel's diagonal with respect to X. |
rbfKernGradX | Gradient of RBF kernel with respect to input locations. |
rbfKernParamInit | RBF kernel parameter initialisation. |
SCGoptim | Optimise the given function using (scaled) conjugate... |
whiteKernDiagGradX | Gradient of WHITE kernel's diagonal with respect to X. |
whiteKernGradX | Gradient of WHITE kernel with respect to input locations. |
whiteKernParamInit | WHITE kernel parameter initialisation. |
zeroAxes | A function to move the axes crossing point to the origin. |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.