est.SBA: Estimate graphons based on Stochastic Blockmodel...

Description Usage Arguments Value References See Also Examples

View source: R/est.SBA.R

Description

est.SBA takes a 2-stage approach for estimating graphons based on exchangeable random graph models. First, it finds a Stochastic Blockmodel Approximation (SBA) of the graphon. Then, it uses clustering information to estimate graphon using a consistent histogram estimator.

Usage

1
est.SBA(A, delta = 0.5)

Arguments

A

either

Case 1.

an (n\times n) binary adjacency matrix, or

Case 2.

a vector containing multiple of (n\times n) binary adjacency matrices.

delta

a precision parameter larger than 0.

Value

a named list containing

H

a (K\times K) matrix fo 3D histogram.

P

an (n\times n) corresponding probability matrix.

B

a length-K list where each element is a vector of nodes/indices for each cluster.

References

\insertRef

Airoldi2013graphon

\insertRef

chan2014graphon

See Also

est.LG

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
## generate a graphon of type No.6 with 3 clusters
W = gmodel.preset(3,id=6)

## create a probability matrix for 100 nodes
graphW = gmodel.block(W,n=100)
P = graphW$P

## draw 17 observations from a given probability matrix
A = gmodel.P(P,rep=17)

## run SBA algorithm with different deltas (0.2,0.5,0.8)
res2 = est.SBA(A,delta=0.2)
res3 = est.SBA(A,delta=0.5)
res4 = est.SBA(A,delta=0.8)

## compare true probability matrix and estimated ones
par(mfrow=c(1,4))
image(P); title("original P")
image(res2$P); title("SBA with delta=0.2")
image(res3$P); title("SBA with delta=0.5")
image(res4$P); title("SBA with delta=0.8")

graphon documentation built on Sept. 21, 2018, 6:26 p.m.