| rsquared,growthrates_fit-method | R Documentation |
Functions to access the results of fitted growthrate objects: summary,
coef, rsquared, deviance, residuals,
df.residual, obs, results.
## S4 method for signature 'growthrates_fit' rsquared(object, ...) ## S4 method for signature 'growthrates_fit' obs(object, ...) ## S4 method for signature 'growthrates_fit' coef(object, extended = FALSE, ...) ## S4 method for signature 'easylinear_fit' coef(object, ...) ## S4 method for signature 'smooth.spline_fit' coef(object, extended = FALSE, ...) ## S4 method for signature 'growthrates_fit' deviance(object, ...) ## S4 method for signature 'growthrates_fit' summary(object, ...) ## S4 method for signature 'nonlinear_fit' summary(object, cov = TRUE, ...) ## S4 method for signature 'growthrates_fit' residuals(object, ...) ## S4 method for signature 'growthrates_fit' df.residual(object, ...) ## S4 method for signature 'smooth.spline_fit' summary(object, cov = TRUE, ...) ## S4 method for signature 'smooth.spline_fit' df.residual(object, ...) ## S4 method for signature 'smooth.spline_fit' deviance(object, ...) ## S4 method for signature 'multiple_fits' coef(object, ...) ## S4 method for signature 'multiple_fits' rsquared(object, ...) ## S4 method for signature 'multiple_fits' deviance(object, ...) ## S4 method for signature 'multiple_fits' results(object, ...) ## S4 method for signature 'multiple_easylinear_fits' results(object, ...) ## S4 method for signature 'multiple_fits' summary(object, ...) ## S4 method for signature 'multiple_fits' residuals(object, ...)
object |
name of a 'growthrate' object. |
... |
other arguments passed to the methods. |
extended |
boolean if extended set of parameters shoild be printed |
cov |
boolean if the covariance matrix should be printed. |
data(bactgrowth)
splitted.data <- multisplit(bactgrowth, c("strain", "conc", "replicate"))
## get table from single experiment
dat <- splitted.data[[10]]
fit1 <- fit_spline(dat$time, dat$value, spar=0.5)
coef(fit1)
summary(fit1)
## derive start parameters from spline fit
p <- c(coef(fit1), K = max(dat$value))
fit2 <- fit_growthmodel(grow_logistic, p=p, time=dat$time, y=dat$value, transform="log")
coef(fit2)
rsquared(fit2)
deviance(fit2)
summary(fit2)
plot(residuals(fit2) ~ obs(fit2)[,2])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.