Description Usage Arguments Details Value References Examples
Determines the value of the penalty parameter lambda when the first penalized parameter group enters the model.
1 2 3 4 5 6 7 8 9 10 11 12 13 | lambdamax(x, ...)
## S3 method for class 'formula'
lambdamax(formula, nonpen = ~1, data, weights, subset,
na.action, coef.init, penscale = sqrt, model = LogReg(),
center = TRUE, standardize = TRUE, contrasts = NULL,
nlminb.opt = list(), ...)
## Default S3 method:
lambdamax(x, y, index, weights = rep(1, length(y)),
offset = rep(0, length(y)), coef.init = rep(0, ncol(x)),
penscale = sqrt, model = LogReg(), center = TRUE,
standardize = TRUE, nlminb.opt = list(), ...)
|
x |
design matrix (including intercept) |
y |
response vector |
formula |
|
nonpen |
|
data |
|
index |
vector which defines the grouping of the
variables. Components sharing the same
number build a group. Non-penalized coefficients are marked with
|
weights |
vector of observation weights. |
subset |
an optional vector specifying a subset of observations to be used in the fitting process. |
na.action |
a function which indicates what should happen when the data contain 'NA's. |
offset |
vector of offset values. |
coef.init |
initial parameter vector. Penalized groups are discarded. |
penscale |
rescaling function to adjust the value of the penalty parameter to the degrees of freedom of the parameter group. See the reference below. |
model |
an object of class |
center |
logical. If true, the columns of the design matrix will be centered (except a possible intercept column). |
standardize |
logical. If true, the design matrix will be blockwise orthonormalized, such that for each block X^TX = n 1 (*after* possible centering). |
contrasts |
an (optional) list with the contrasts for the factors in the model. |
nlminb.opt |
arguments to be supplied to |
... |
additional arguments to be passed to the functions defined
in |
Uses nlminb
to optimize the non-penalized parameters.
An object of type numeric is returned.
Lukas Meier, Sara van de Geer and Peter B\"uhlmann (2008), The Group Lasso for Logistic Regression, Journal of the Royal Statistical Society, 70 (1), 53 - 71
1 2 3 |
[1] 68.30414
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.