View source: R/summary-cv-grpreg.R
summary.cv.grpreg | R Documentation |
Summary method for cv.grpreg
or cv.grpsurv
objects
## S3 method for class 'cv.grpreg'
summary(object, ...)
## S3 method for class 'summary.cv.grpreg'
print(x, digits, ...)
object |
A |
... |
Further arguments passed to or from other methods. |
x |
A |
digits |
Number of digits past the decimal point to print out. Can be a vector specifying different display digits for each of the five non-integer printed values. |
summary(cvfit)
produces an object with S3 class
"summary.cv.grpreg"
. The class has its own print method and contains
the following list elements:
penalty |
The penalty used by
|
model |
The type of model:
|
n |
Number of observations |
p |
Number of regression coefficients (not including the intercept). |
min |
The index of |
lambda |
The sequence of
|
cve |
Cross-validation error (deviance). |
r.squared |
Proportion of variance explained by the model, as estimated by cross-validation. |
snr |
Signal to noise ratio, as estimated by cross-validation. |
sigma |
For linear regression models, the scale parameter estimate. |
pe |
For logistic regression models, the prediction error (misclassification error). |
Patrick Breheny
grpreg
, cv.grpreg
,
cv.grpsurv
, plot.cv.grpreg
# Birthweight data
data(Birthwt)
X <- Birthwt$X
group <- Birthwt$group
# Linear regression
y <- Birthwt$bwt
cvfit <- cv.grpreg(X, y, group)
summary(cvfit)
# Logistic regression
y <- Birthwt$low
cvfit <- cv.grpreg(X, y, group, family="binomial")
summary(cvfit)
# Cox regression
data(Lung)
cvfit <- with(Lung, cv.grpsurv(X, y, group))
summary(cvfit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.