View source: R/gs_spending_combo.R
gs_spending_combo | R Documentation |
Derive spending bound for MaxCombo group sequential boundary
gs_spending_combo(par = NULL, info = NULL)
par |
A list with the following items:
|
info |
Statistical information at all analyses, at least up to analysis k. |
A vector of the alpha spending per analysis.
# alpha-spending
par <- list(sf = gsDesign::sfLDOF, total_spend = 0.025)
gs_spending_combo(par, info = 1:3 / 3)
par <- list(sf = gsDesign::sfLDPocock, total_spend = 0.025)
gs_spending_combo(par, info = 1:3 / 3)
par <- list(sf = gsDesign::sfHSD, total_spend = 0.025, param = -40)
gs_spending_combo(par, info = 1:3 / 3)
# Kim-DeMets (power) Spending Function
par <- list(sf = gsDesign::sfPower, total_spend = 0.025, param = 1.5)
gs_spending_combo(par, info = 1:3 / 3)
# Exponential Spending Function
par <- list(sf = gsDesign::sfExponential, total_spend = 0.025, param = 1)
gs_spending_combo(par, info = 1:3 / 3)
# Two-parameter Spending Function Families
par <- list(sf = gsDesign::sfLogistic, total_spend = 0.025, param = c(.1, .4, .01, .1))
gs_spending_combo(par, info = 1:3 / 3)
par <- list(sf = gsDesign::sfBetaDist, total_spend = 0.025, param = c(.1, .4, .01, .1))
gs_spending_combo(par, info = 1:3 / 3)
par <- list(sf = gsDesign::sfCauchy, total_spend = 0.025, param = c(.1, .4, .01, .1))
gs_spending_combo(par, info = 1:3 / 3)
par <- list(sf = gsDesign::sfExtremeValue, total_spend = 0.025, param = c(.1, .4, .01, .1))
gs_spending_combo(par, info = 1:3 / 3)
par <- list(sf = gsDesign::sfExtremeValue2, total_spend = 0.025, param = c(.1, .4, .01, .1))
gs_spending_combo(par, info = 1:3 / 3)
par <- list(sf = gsDesign::sfNormal, total_spend = 0.025, param = c(.1, .4, .01, .1))
gs_spending_combo(par, info = 1:3 / 3)
# t-distribution Spending Function
par <- list(sf = gsDesign::sfTDist, total_spend = 0.025, param = c(-1, 1.5, 4))
gs_spending_combo(par, info = 1:3 / 3)
# Piecewise Linear and Step Function Spending Functions
par <- list(sf = gsDesign::sfLinear, total_spend = 0.025, param = c(.2, .4, .05, .2))
gs_spending_combo(par, info = 1:3 / 3)
par <- list(sf = gsDesign::sfStep, total_spend = 0.025, param = c(1 / 3, 2 / 3, .1, .1))
gs_spending_combo(par, info = 1:3 / 3)
# Pointwise Spending Function
par <- list(sf = gsDesign::sfPoints, total_spend = 0.025, param = c(.25, .25))
gs_spending_combo(par, info = 1:3 / 3)
# Truncated, trimmed and gapped spending functions
par <- list(sf = gsDesign::sfTruncated, total_spend = 0.025,
param = list(trange = c(.2, .8), sf = gsDesign::sfHSD, param = 1))
gs_spending_combo(par, info = 1:3 / 3)
par <- list(sf = gsDesign::sfTrimmed, total_spend = 0.025,
param = list(trange = c(.2, .8), sf = gsDesign::sfHSD, param = 1))
gs_spending_combo(par, info = 1:3 / 3)
par <- list(sf = gsDesign::sfGapped, total_spend = 0.025,
param = list(trange = c(.2, .8), sf = gsDesign::sfHSD, param = 1))
gs_spending_combo(par, info = 1:3 / 3)
# Xi and Gallo conditional error spending functions
par <- list(sf = gsDesign::sfXG1, total_spend = 0.025, param = 0.5)
gs_spending_combo(par, info = 1:3 / 3)
par <- list(sf = gsDesign::sfXG2, total_spend = 0.025, param = 0.14)
gs_spending_combo(par, info = 1:3 / 3)
par <- list(sf = gsDesign::sfXG3, total_spend = 0.025, param = 0.013)
gs_spending_combo(par, info = 1:3 / 3)
# beta-spending
par <- list(sf = gsDesign::sfLDOF, total_spend = 0.2)
gs_spending_combo(par, info = 1:3 / 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.