Description Usage Arguments Details Value Author(s) References See Also Examples
Prints the basic information for a gvlma object, which is the output
object from the function gvlma
.
1 2 3 4 5 | ## S3 method for class 'gvlma'
summary(object, ...)
## S3 method for class 'gvlma'
print(x, ...)
display.gvlmatests(gvlmaobj)
|
x, object, gvlmaobj |
An object resulting from a call to gvlma. It is a list containing the components of a call to lm plus an item with the name GlobalTest. |
... |
Additional arguments that are passed to |
print.gvlma
invokes print on the lm
object and then calls
display.gvlmatests
.
summary.gvlma
invokes summary
on the lm
object with the
additional ... arguments and then calls
display.gvlmatests
.
display.gvlmatests
provides the test statistics, p-values and decision
(whether linear models assumptions are satisfied) for the global and
directional tests associated with the gvlma object. The decision is
reported at the level of significance used when the gvlma object was
created. See the argument alphalevel
to gvlma
.
The value returned invisibly is a dataframe with row names indicating the global test and the 4 directional tests. Variables are
Value |
Value of the test statistic. |
p-value |
p-value associated with the test. |
Decision |
Text string indicating whether the test statistic is
significant at the significance level specified in the original call
to |
Slate, EH slate@stat.fsu.edu and Pena, EA pena@stat.sc.edu.
Pena, EA and Slate, EH (2006). “Global validation of linear model assumptions,” J.\ Amer.\ Statist.\ Assoc., 101(473):341-354.
gvlma
, display.gvlmatests
, summary.lm
1 2 3 4 | data(CarMileageData)
CarModelAssess <- gvlma(NumGallons ~ MilesLastFill, data = CarMileageData)
CarModelAssess
summary(CarModelAssess)
|
Call:
lm(formula = NumGallons ~ MilesLastFill, data = CarMileageData)
Coefficients:
(Intercept) MilesLastFill
6.80821 0.01602
ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
Level of Significance = 0.05
Call:
gvlma(x = NumGallons ~ MilesLastFill, data = CarMileageData)
Value p-value Decision
Global Stat 27.4560 1.607e-05 Assumptions NOT satisfied!
Skewness 0.2355 6.275e-01 Assumptions acceptable.
Kurtosis 25.1085 5.419e-07 Assumptions NOT satisfied!
Link Function 1.6298 2.017e-01 Assumptions acceptable.
Heteroscedasticity 0.4822 4.874e-01 Assumptions acceptable.
Call:
lm(formula = NumGallons ~ MilesLastFill, data = CarMileageData)
Residuals:
Min 1Q Median 3Q Max
-1.99345 -0.32612 0.00885 0.36902 2.46317
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.808214 0.491732 13.85 <2e-16 ***
MilesLastFill 0.016017 0.001305 12.27 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.591 on 203 degrees of freedom
Multiple R-squared: 0.426, Adjusted R-squared: 0.4232
F-statistic: 150.7 on 1 and 203 DF, p-value: < 2.2e-16
ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
Level of Significance = 0.05
Call:
gvlma(x = NumGallons ~ MilesLastFill, data = CarMileageData)
Value p-value Decision
Global Stat 27.4560 1.607e-05 Assumptions NOT satisfied!
Skewness 0.2355 6.275e-01 Assumptions acceptable.
Kurtosis 25.1085 5.419e-07 Assumptions NOT satisfied!
Link Function 1.6298 2.017e-01 Assumptions acceptable.
Heteroscedasticity 0.4822 4.874e-01 Assumptions acceptable.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.