knitr::opts_chunk$set( collapse = F, comment = "#>" ) options(tibble.print_min = 4L, tibble.print_max = 4L) library(gapminder) library(hablar) library(dplyr)
convert your data typesBest practise of data analysis is to fix data types directly after importing data into R. This helps in many ways:
Additionally, if every column is converted to its appropriate data type then you won't be surprised by data type errors the next time you run the script.
convert(.x, ...)
where .x is a data frame. ... is a placeholder for data type specific conversion functions.
convert must be used in conjunction with data type conversion functions:
chr converts to character.num converts to numeric.int converts to integer.lgl converts to logical.fct converts to factor.dte converts to date.dtm converts to date time.Imagine you have a data frame where you want to change columns:
a and b to numericalc to date d and e to characterThen you can write:
df %>% convert(num(a, b), dte(c), chr(d, e))
The easiest way to understand how simple convert is to use is with examples. Have a look at the a gapminder dataset from the package gapminder:
library(gapminder)
gapminder
We might want to change the country column to character instead of factor. To do this we use chr together with the column name inside convert:
gapminder %>% convert(chr(country))
This converted the country column to the data type character. But we do not have to make this whole procedure for each column if we want to convert more columns. Let's say that we also want to convert continent to character and the column lifeExp to integer, pop to double and gdpPercap to numeric. It is simply done:
gapminder %>% convert(chr(country, continent), int(lifeExp), dbl(pop), num(gdpPercap))
convert?You can change alot of data types with little code. Consider using mutate from dplyr to do the same operation:
gapminder %>% mutate(country = as.character(country), continent = as.character(continent), lifeExp = as.integer(lifeExp), pop = as.double(pop), gdpPercap = as.numeric(gdpPercap))
Which gives the same result. However, you need to refer to the column name twice and the data type conversion function for each column. Imagine the code to convert 20 columns.
However, dplyr have another way of applying the same function to multiple columns which could help, mutate_at. The same example would then look like:
gapminder %>% mutate_at(vars(country, continent), funs(as.character)) %>% mutate_at(vars(lifeExp), funs(as.integer)) %>% mutate_at(vars(pop), funs(as.double)) %>% mutate_at(vars(gdpPercap), funs(as.numeric))
Which is more easily scaled to deal with data type conversion of large numbers of variables. However, convert does the same job with much less code. In fact, convert uses mutate_at internally. The difference is syntax and code readability. Compare again with convert:
gapminder %>% convert(chr(country, continent), int(lifeExp), dbl(pop), num(gdpPercap))
convert also supports functions of convert support additional arguments to be passed. For example, if you want to convert a number to a date and want to include an origin argument you can write:
tibble(dates = c(12818, 13891), sunny = c("yes", "no")) %>% convert(dte(dates, .args = list(origin = "1900-01-01")))
convert is built upon dplyr and it will share some amazing features of dplyr. For example, tidyselect works with convert which helps you to select multiple columns at the same time. A simple example, if you want to change all columns with names that includes the letter "e" to factors, you can write:
gapminder %>% convert(fct(contains("e")))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.