make_design_matrix | R Documentation |
Make a HAL design matrix based on original design matrix X and a list of basis functions in argument blist
make_design_matrix(X, blist, p_reserve = 0.5)
X |
Matrix of covariates containing observed data in the columns. |
blist |
List of basis functions with which to build HAL design matrix. |
p_reserve |
Sparse matrix pre-allocation proportion. Default value is 0.5. If one expects a dense HAL design matrix, it is useful to set p_reserve to a higher value. |
A dgCMatrix
sparse matrix of indicator basis functions
corresponding to the design matrix in a zero-order highly adaptive lasso.
gendata <- function(n) {
W1 <- runif(n, -3, 3)
W2 <- rnorm(n)
W3 <- runif(n)
W4 <- rnorm(n)
g0 <- plogis(0.5 * (-0.8 * W1 + 0.39 * W2 + 0.08 * W3 - 0.12 * W4))
A <- rbinom(n, 1, g0)
Q0 <- plogis(0.15 * (2 * A + 2 * A * W1 + 6 * A * W3 * W4 - 3))
Y <- rbinom(n, 1, Q0)
data.frame(A, W1, W2, W3, W4, Y)
}
set.seed(1234)
data <- gendata(100)
covars <- setdiff(names(data), "Y")
X <- as.matrix(data[, covars, drop = FALSE])
basis_list <- enumerate_basis(X)
x_basis <- make_design_matrix(X, basis_list)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.