| gmu_lasso | R Documentation | 
Generalized Matrix Uncertainty Lasso
gmu_lasso(
  W,
  y,
  lambda = NULL,
  delta = NULL,
  family = "binomial",
  active_set = TRUE,
  maxit = 1000
)
| W | Design matrix, measured with error. Must be a numeric matrix. | 
| y | Vector of responses. | 
| lambda | Regularization parameter. If not set, lambda.min from glmnet::cv.glmnet is used. | 
| delta | Additional regularization parameter, bounding the measurement error. | 
| family | Character string. Currently "binomial" and "poisson" are supported. | 
| active_set | Logical. Whether or not to use an active set strategy to speed up coordinate descent algorithm. | 
| maxit | Maximum number of iterations of iterative reweighing algorithm. | 
An object of class "gmu_lasso".
rosenbaum2010hdme
\insertRefsorensen2018hdme
set.seed(1)
# Number of samples
n <- 200
# Number of covariates
p <- 100
# Number of nonzero features
s <- 10
# True coefficient vector
beta <- c(rep(1,s),rep(0,p-s))
# Standard deviation of measurement error
sdU <- 0.2
# True data, not observed
X <- matrix(rnorm(n*p),nrow = n,ncol = p)
# Measured data, with error
W <- X + sdU * matrix(rnorm(n * p), nrow = n, ncol = p)
# Binomial response
y <- rbinom(n, 1, (1 + exp(-X%*%beta))**(-1))
# Run the GMU Lasso
fit <- gmu_lasso(W, y, delta = NULL)
print(fit)
plot(fit)
coef(fit)
# Get an elbow plot, in order to choose delta.
plot(fit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.