Nothing
#' Diverging Bar Chart
#'
#' @family Plotting Functions
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @description
#' Diverging Bars is a bar chart that can handle both negative and positive
#' values. This can be implemented by a smart tweak with `geom_bar()`. But the
#' usage of `geom_bar()` can be quite confusing. That's because, it can be used to
#' make a bar chart as well as a histogram. Let me explain.
#'
#' By default, `geom_bar()` has the stat set to count. That means, when you
#' provide just a continuous X variable (and no Y variable), it tries to make
#' a histogram out of the data.
#'
#' In order to make a bar chart create bars instead of histogram,
#' you need to do two things. Set `stat = identity` and provide both `x` and `y`
#' inside `aes()` where, `x` is either character or factor and `y` is numeric.
#' In order to make sure you get diverging bars instead of just bars, make sure,
#' your categorical variable has 2 categories that changes values at a certain
#' threshold of the continuous variable. In below example, the mpg from mtcars
#' data set is normalized by computing the z score. Those vehicles with mpg
#' above zero are marked green and those below are marked red.
#'
#' @details
#' This function takes only a few arguments and returns a ggplot2 object.
#'
#' @param .data The data to pass to the function, must be a tibble/data.frame.
#' @param .x_axis The data that is passed to the x-axis.
#' @param .y_axis The data that is passed to the y-axis. This will also equal the
#' parameter `label`
#' @param .fill_col The column that will be used to fill the color of the bars.
#' @param .plot_title Default is NULL
#' @param .plot_subtitle Default is NULL
#' @param .plot_caption Default is NULL
#' @param .interactive Default is FALSE. TRUE returns a plotly plot
#'
#' @examples
#' suppressPackageStartupMessages(library(ggplot2))
#'
#' data("mtcars")
#' mtcars$car_name <- rownames(mtcars)
#' mtcars$mpg_z <- round((mtcars$mpg - mean(mtcars$mpg))/sd(mtcars$mpg), 2)
#' mtcars$mpg_type <- ifelse(mtcars$mpg_z < 0, "below", "above")
#' mtcars <- mtcars[order(mtcars$mpg_z), ] # sort
#' mtcars$car_name <- factor(mtcars$car_name, levels = mtcars$car_name)
#'
#' diverging_bar_plt(
#' .data = mtcars
#' , .x_axis = car_name
#' , .y_axis = mpg_z
#' , .fill_col = mpg_type
#' , .interactive = FALSE
#' )
#'
#' @return
#' A `plotly` plot or a `ggplot2` static plot
#'
#' @importFrom plotly ggplotly
#'
#' @export
#'
diverging_bar_plt <- function(.data, .x_axis, .y_axis, .fill_col,
.plot_title = NULL, .plot_subtitle = NULL,
.plot_caption = NULL, .interactive = FALSE){
# * Tidyeval ----
x_axis_var <- rlang::enquo(.x_axis)
y_axis_var <- rlang::enquo(.y_axis)
fill_col_var <- rlang::enquo(.fill_col)
plot_title <- .plot_title
plot_subtitle <- .plot_subtitle
plot_caption <- .plot_caption
interact_var <- .interactive
# * Checks ----
if (rlang::quo_is_missing(x_axis_var) | rlang::quo_is_missing(y_axis_var)){
stop(call. = FALSE, "You must provide both the .x_axis AND .y_axis columns.")
}
if (rlang::quo_is_missing(fill_col_var)){
stop(call. = FALSE, "You must provide the .fill_col that maps the color
for a over or under category.")
}
if(!is.data.frame(.data)){
stop(call. = FALSE, "(.data) is missing, please supply.")
}
if (!is.logical(.interactive)) {
stop(call. = FALSE, "You must supply either TRUE or FALSE for .interactive")
}
# * Data ----
data_tbl <- tibble::as_tibble(.data)
# * Plot ----
g <- ggplot2::ggplot(
data = data_tbl
, ggplot2::aes(
x = {{ x_axis_var }}
, y = {{ y_axis_var }}
, label = {{ y_axis_var }}
)
) +
ggplot2::geom_bar(
stat = 'identity'
, ggplot2::aes(
fill = {{ fill_col_var }}
)
, width=.5
) +
ggplot2::labs(
title = plot_title,
subtitle = plot_subtitle,
caption = plot_caption
) +
ggplot2::coord_flip() +
ggplot2::theme_minimal()
# * Return ----
if(interact_var){
plt <- plotly::ggplotly(g)
} else {
plt <- g
}
return(plt)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.