gsorth | R Documentation |
gsorth
uses sequential, orthogonal projections, as in the
Gram-Schmidt method, to transform a matrix or numeric columns of a data
frame into an uncorrelated set, possibly retaining the same column means and
standard deviations as the original.
gsorth(y, order, recenter = TRUE, rescale = TRUE, adjnames = TRUE)
y |
A numeric data frame or matrix |
order |
An integer vector specifying the order of and/or a subset of
the columns of |
recenter |
If |
rescale |
If |
adjnames |
If |
In statistical applications, interpretation depends on the order
of
the variables orthogonalized. In multivariate linear models, orthogonalizing
the response, Y variables provides the equivalent of step-down tests, where
Y1 is tested alone, and then Y2.1, Y3.12, etc. can be tested to determine
their additional contributions over the previous response variables.
Similarly, orthogonalizing the model X variables provides the equivalent of
Type I tests, such as provided by anova
.
The method is equivalent to setting each of columns 2:p
to the
residuals from a linear regression of that column on all prior columns,
i.e.,
z[,j] <- resid( lm( z[,j] ~ as.matrix(z[,1:(j-1)]), data=z) )
However, for accuracy and speed the transformation is carried out using the QR decomposition.
Returns a matrix or data frame with uncorrelated columns. Row and column names are copied to the result.
Michael Friendly
qr
,
GSiris <- gsorth(iris[,1:4])
GSiris <- gsorth(iris, order=1:4) # same, using order
str(GSiris)
zapsmall(cor(GSiris))
colMeans(GSiris)
# sd(GSiris) -- sd(<matrix>) now deprecated
apply(GSiris, 2, sd)
# orthogonalize Y side
GSiris <- data.frame(gsorth(iris[,1:4]), Species=iris$Species)
iris.mod1 <- lm(as.matrix(GSiris[,1:4]) ~ Species, data=GSiris)
car::Anova(iris.mod1)
# orthogonalize X side
rohwer.mod <- lm(cbind(SAT, PPVT, Raven) ~ n + s + ns + na + ss, data=Rohwer)
car::Anova(rohwer.mod)
# type I tests for Rohwer data
Rohwer.orth <- cbind(Rohwer[,1:5], gsorth(Rohwer[, c("n", "s", "ns", "na", "ss")], adjnames=FALSE))
rohwer.mod1 <- lm(cbind(SAT, PPVT, Raven) ~ n + s + ns + na + ss, data=Rohwer.orth)
car::Anova(rohwer.mod1)
# compare with anova()
anova(rohwer.mod1)
# compare heplots for original Xs and orthogonalized, Type I
heplot(rohwer.mod)
heplot(rohwer.mod1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.