# qhermite: Quantile function for the generalized Hermite distribution In hermite: Generalized Hermite Distribution

## Description

Quantile function for the generalized Hermite distribution with parameters `a`, `b` and `m`.

## Usage

 `1` ``` qhermite(p, a, b, m=2, lower.tail=TRUE) ```

## Arguments

 `p` vector of probabilities. `a` first parameter for the Hermite distribution. `b` second parameter for the Hermite distribution. `m` degree of the generalized Hermite distribution. Its default value is `2`, corresponding to the standard Hermite distribution. `lower.tail` logical; if TRUE (default), probabilities are P[X ≤ x], otherwise, P[X > x].

## Value

The smallest integer x such that P(X ≤ x) ≥ p (or such that P(X ≤ x) ≥ 1-p if `lower.tail` is set to `FALSE`), where X is a generalized Hermite random variable with parameters `a`, `b` and `m`.

## Author(s)

David Moriña, Manuel Higueras, Pedro Puig and María Oliveira

## References

Kemp C D, Kemp A W. Some Properties of the Hermite Distribution. Biometrika 1965;52 (3-4):381–394.

McKendrick A G Applications of Mathematics to Medical Problems. Proceedings of the Edinburgh Mathematical Society 1926;44:98–130.

Kemp A W, Kemp C D. An alternative derivation of the Hermite distribution. Biometrika 1966;53 (3-4):627–628.

Patel Y C. Even Point Estimation and Moment Estimation in Hermite Distribution. Biometrics 1976;32 (4):865–873.

Gupta R P, Jain G C. A Generalized Hermite distribution and Its Properties. SIAM Journal on Applied Mathematics 1974;27:359–363.

Bekelis, D. Convolutions of the Poisson laws in number theory. In Analytic & Probabilistic Methods in Number Theory: Proceedings of the 2nd International Conference in Honour of J. Kubilius, Lithuania 1996;4:283–296.

Zhang J, Huang H. On Nonnegative Integer-Valued Lévy Processes and Applications in Probabilistic Number Theory and Inventory Policies. American Journal of Theoretical and Applied Statistics 2013;2:110–121.

Kotz S. Encyclopedia of statistical sciences. John Wiley 1982-1989.

Kotz S. Univariate discrete distributions. Norman L. Johnson 2005.

Puig P. (2003). Characterizing Additively Closed Discrete Models by a Property of Their Maximum Likelihood Estimators, with an Application to Generalized Hermite Distributions. Journal of the American Statistical Association 2003; 98:687–692.

`Distributions` for some other distributions, `dhermite`, `phermite`, `rhermite`, `hermite-package`, `glm.hermite`
 `1` ```d <- qhermite(0.9999987, 0.8, 0.3, m=3) ```