Description Usage Arguments Value Author(s) References See Also Examples
One of the main functions in the hierNet package. Fits a path of hierNet models over different values of the regularization parameter. Calls hierNet, which builds a regression model with hierarchically constrained pairwise interactions. Required inputs are an x matrix of features (the columns are the features) and a y vector of values. Reasonably fast for moderate sized problems (100-200 variables). We are currently working on an alternate algorithm for large scale problems.
1 2 3 4 5 6 | hierNet.path(x, y,
lamlist = NULL, delta=1e-8, minlam = NULL, maxlam = NULL, nlam=20, flmin=.01,
diagonal = TRUE, strong = FALSE, aa = NULL, zz = NULL,
stand.main = TRUE, stand.int = FALSE,
rho = nrow(x), niter = 100, sym.eps = 0.001,
step = 1, maxiter = 2000, backtrack = 0.2, tol = 1e-05, trace = 0)
|
x |
A matrix of predictors, where the rows are the samples and the columns are the predictors |
y |
A vector of observations, where length(y) equals nrow(x) |
lamlist |
Optional vector of values of lambda (the regularization parameter). L1 penalty param is |
delta |
Elastic Net parameter. Squared L2 penalty param is |
minlam |
Optional minimum value for lambda |
maxlam |
Optional maximum value for lambda |
nlam |
Number of values of lambda to be tried |
flmin |
Fraction of maxlam; minlam= flmin*maxlam. If computation is slow, try increasing flmin to focus on the sparser part of the path |
diagonal |
Flag specifying whether to include "pure" quadratic terms, th_jjX_j^2, in the model. Default TRUE. |
strong |
Flag specifying strong hierarchy (true) or weak hierarchy (false). Default false |
aa |
An *optional* argument, a list with results from a previous call |
zz |
An *optional* argument, a matrix whose columns are products of features, computed by the function compute.interactions.c |
stand.main |
Should main effects be standardized? Default TRUE |
stand.int |
Should interactions be standardized? Default FALSE |
rho |
ADMM parameter: tuning parameter (>0) for ADMM. If there are convergence problems, try decreasing rho. Default n. |
niter |
ADMM parameter: number of iterations |
sym.eps |
ADMM parameter Thresholding for symmetrizing with strong=TRUE |
step |
Stepsize for generalized gradient descent |
maxiter |
Maximum number of iterations for generalized gradient descent |
backtrack |
Backtrack parameter for generalized gradient descent |
tol |
Error tolerance parameter for generalized gradient descent |
trace |
Output option; trace=1 gives verbose output |
bp |
p by nlam matrix of estimated "positive part" main effects (p=#variables) |
bn |
p by nlam matrix of estimated "negative part" main effects |
th |
p by p by nlam array of estimated interaction coefficients |
obj |
nlam values of objective function, one per lambda value |
lamlist |
Vector of values of lambda used |
mx |
p-vector of column means of x |
sx |
p-vector of column standard deviations of x |
my |
mean of y |
mzz |
column means of feature product matrix |
szz |
column standard deviations of feature product matrix |
Jacob Bien and Robert Tibshirani
Bien, J., Taylor, J., Tibshirani, R., (2013) "A Lasso for Hierarchical Interactions." Annals of Statistics. 41(3). 1111-1141.
hierNet,predict.hierNet, hierNet.cv
1 2 3 4 5 6 |
i,lam= 1 129.72
GG converged in 1 iterations.
i,lam= 2 101.8
GG converged in 20 iterations.
i,lam= 3 79.89
GG converged in 26 iterations.
i,lam= 4 62.69
GG converged in 26 iterations.
i,lam= 5 49.2
GG converged in 26 iterations.
i,lam= 6 38.61
GG converged in 48 iterations.
i,lam= 7 30.3
GG converged in 57 iterations.
i,lam= 8 23.78
GG converged in 62 iterations.
i,lam= 9 18.66
GG converged in 55 iterations.
i,lam= 10 14.64
GG converged in 63 iterations.
i,lam= 11 11.49
GG converged in 60 iterations.
i,lam= 12 9.02
GG converged in 119 iterations.
i,lam= 13 7.08
GG converged in 122 iterations.
i,lam= 14 5.55
GG converged in 139 iterations.
i,lam= 15 4.36
GG converged in 147 iterations.
i,lam= 16 3.42
GG converged in 200 iterations.
i,lam= 17 2.68
GG converged in 374 iterations.
i,lam= 18 2.11
GG converged in 291 iterations.
i,lam= 19 1.65
GG converged in 602 iterations.
i,lam= 20 1.3
GG converged in 657 iterations.
Call:
hierNet.path(x = x, y = y)
Lambda Objective Number of main effects Number of interactions
[1,] 129.72 604.54 1 0
[2,] 101.80 596.67 1 1
[3,] 79.89 578.15 4 2
[4,] 62.69 551.28 4 2
[5,] 49.20 521.57 4 2
[6,] 38.61 492.44 7 6
[7,] 30.30 463.48 8 7
[8,] 23.78 434.86 8 11
[9,] 18.66 406.66 8 11
[10,] 14.64 380.64 9 12
[11,] 11.49 357.57 10 13
[12,] 9.02 337.13 10 20
[13,] 7.08 316.64 10 23
[14,] 5.55 295.96 10 24
[15,] 4.36 276.25 10 26
[16,] 3.42 258.17 10 30
[17,] 2.68 241.73 10 33
[18,] 2.11 226.67 10 34
[19,] 1.65 212.84 10 42
[20,] 1.30 199.61 10 45
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.