Nothing
#' highOrderPortfolios: Design of High-Order Portfolios via Mean, Variance, Skewness, and Kurtosis
#'
#' The classical Markowitz's mean-variance portfolio formulation ignores
#' heavy tails and skewness. High-order portfolios use higher order moments to
#' better characterize the return distribution. Different formulations and fast
#' algorithms are proposed for high-order portfolios based on the mean, variance,
#' skewness, and kurtosis.
#'
#'
#' @section Functions:
#' \code{\link{design_MVSK_portfolio_via_sample_moments}()}, \code{\link{design_MVSK_portfolio_via_skew_t}()},
#' and \code{\link{design_MVSKtilting_portfolio_via_sample_moments}()}
#'
#' @section Help:
#' For a quick help see the README file:
#' \href{https://CRAN.R-project.org/package=highOrderPortfolios/readme/README.html}{CRAN-README} and
#' \href{https://github.com/dppalomar/highOrderPortfolios/blob/master/README.md}{GitHub-README}.
#'
#'
#' For more details see the vignette:
#' \href{https://CRAN.R-project.org/package=highOrderPortfolios/vignettes/DesignOfHighOrderPortfolios.html}{CRAN-vignette} and
#' \href{https://htmlpreview.github.io/?https://github.com/dppalomar/highOrderPortfolios/blob/master/vignettes/DesignOfHighOrderPortfolios.html}{GitHub-vignette}.
#'
#' @author Rui Zhou, Xiwen Wang, and Daniel P. Palomar
#'
#' @references
#' R. Zhou and D. P. Palomar, "Solving High-Order Portfolios via Successive Convex Approximation Algorithms,"
#' in \emph{IEEE Transactions on Signal Processing}, vol. 69, pp. 892-904, 2021.
#' <https://doi.org/10.1109/TSP.2021.3051369>.
#'
#' X. Wang, R. Zhou, J. Ying, and D. P. Palomar, "Efficient and Scalable High-Order Portfolios Design via Parametric Skew-t Distribution,"
#' Available in arXiv, 2022. <https://arxiv.org/pdf/2206.02412.pdf>.
#'
#'
#' @useDynLib highOrderPortfolios
#' @docType package
#' @name highOrderPortfolios-package
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.