Defines functions hilbert.order

Documented in hilbert.order

#' Estimate the Hilbert order for a given matrix
#' Estimate the Hilbert order, or the number of bins in each dimension, so that if the matrix was
#' random every row in the matrix would correspond to a single bin.
#' @param mat the matrix for which to estimate the Hilbert order
#' @details Assuming the matrix is fully random, there is no need to generate more voxels
#'            (the combination of bins over all dimensions) than there are rows in the matrix. The number can be
#'            derived from the following formula:
#'            \deqn{c^{d} < N}{c^d < N}
#'            where \emph{c} is the number of bins, \emph{d} is the number of dimensions and \emph{N} is the total
#'            number of cells in the dataset. \emph{c} can be computed easily using the following formula:
#'            \deqn{c = \lfloor \sqrt[d]{N}}{c = floor(N^1/d)}
#'            The number of cuts for \code{\link{do.cut}} is the number of bins plus 1.
#' @return the suggested number of bins to use for the specified \code{mat}.
#' @example examples/example.cut.R
#' @author Yann Abraham
#' @export
hilbert.order <- function(mat) {

Try the hilbertSimilarity package in your browser

Any scripts or data that you put into this service are public.

hilbertSimilarity documentation built on Nov. 12, 2019, 1:06 a.m.