Nothing
#' @title Superseded: suggest a value of s_tau
#' @export
#' @keywords internal
#' @description Superseded:
#' suggest a value of the `s_tau` hyperparameter
#' to roughly target a specified minimum amount of borrowing
#' in the hierarchical model with the uniform prior.
#' Only use if a diffuse prior on `tau` is not feasible.
#' @details The target minimum amount of borrowing
#' is expressed in the `precision_ratio` argument.
#' The precision ratio is a metric that quantifies the amount of
#' borrowing in the hierarchical model. See the "Methods" vignette
#' for details.
#' @return Numeric of length equal to `length(precision_ratio)` and
#' `length(sigma)`, suggested values of s_tau for each element of
#' `precision_ratio` and `sigma`.
#' @param precision_ratio Positive numeric vector of elements between 0 and 1
#' with target precision ratios.
#' @param sigma Positive numeric vector of residual standard deviations.
#' @param n Number of non-missing patients.
#' @examples
#' hbl_s_tau(precision_ratio = 0.5, sigma = 1, n = 100)
hbl_s_tau <- function(precision_ratio = 0.5, sigma = 1, n = 100) {
true(precision_ratio, . > 0, . < 1, is.finite(.))
true(sigma, . > 0, is.finite(.))
true(length(precision_ratio) == length(sigma))
2 * sigma * sqrt((1 / n) * ((1 / precision_ratio) - 1))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.