hmcdm-package | R Documentation |
Fitting hidden Markov models of learning under the cognitive diagnosis framework. The estimation of the hidden Markov diagnostic classification model, the first order hidden Markov model, the reduced-reparameterized unified learning model, and the joint learning model for responses and response times.
Maintainer: Sunbeom Kwon sunbeom2@illinois.edu
Authors:
Susu Zhang szhan105@illinois.edu
Shiyu Wang swang44@uga.edu
Yinghan Chen yinghanc@unr.edu
Wang, S., Yang, Y., Culpepper, S. A., & Douglas, J. A. (2018) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3102/1076998617719727")} "Tracking Skill Acquisition With Cognitive Diagnosis Models: A Higher-Order, Hidden Markov Model With Covariates."
Chen, Y., Culpepper, S. A., Wang, S., & Douglas, J. (2018) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1177/0146621617721250")} "A hidden Markov model for learning trajectories in cognitive diagnosis with application to spatial rotation skills."
Wang, S., Zhang, S., Douglas, J., & Culpepper, S. (2018) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/15366367.2018.1435105")} "Using Response Times to Assess Learning Progress: A Joint Model for Responses and Response Times."
Zhang, S., Douglas, J. A., Wang, S. & Culpepper, S. A. (2019) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/978-3-030-05584-4_24")} "Reduced Reparameterized Unified Model Applied to Learning Spatial Rotation Skills."
Useful links:
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.