hmcdm | R Documentation |
Runs MCMC to estimate parameters of any of the listed learning models.
hmcdm(
Response,
Q_matrix,
model,
Design_array = NULL,
Test_order = NULL,
Test_versions = NULL,
chain_length = 100L,
burn_in = 50L,
G_version = NA_integer_,
theta_propose = 0,
Latency_array = NULL,
deltas_propose = NULL,
R = NULL
)
Response |
An |
Q_matrix |
A J-by-K Q-matrix. |
model |
A |
Design_array |
An |
Test_order |
Optional. A |
Test_versions |
Optional. A |
chain_length |
An |
burn_in |
An |
G_version |
Optional. An |
theta_propose |
Optional. A |
Latency_array |
Optional. A |
deltas_propose |
Optional. A |
R |
Optional. A reachability |
A list
of parameter samples and Metropolis-Hastings acceptance rates (if applicable).
Susu Zhang
output_FOHM = hmcdm(Y_real_array, Q_matrix, "DINA_FOHM", Design_array, 100, 30)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.