SEsamples | R Documentation |
Parametric bootstrap samples for a 2-state hidden Markov model used to compute standard errors.
data("SEsamples")
A matrix with 1000 rows for each sample, 12 columns for each parameter of the model, including the parameters that are fixed at their boundary values.
The bootstrap sample was generated by the following code:
require(depmixS4) library(hmmr) data(simplehmm) # define the model set.seed(214) mod1 <- depmix(obs~1,data=simplehmm,nstates=2, family=multinomial("identity"), respst=c(.6,0,.4,0,.2,.8), trst=runif(4), inst=c(1,0)) # fit the model fm1 <- fit(mod1,emcontrol=em.control(random.start=FALSE)) # compute bootstrap samples nsamples <- 1000 SEsamples <- matrix(0,ncol=npar(fm1),nrow=nsamples) for(i in 1:nsamples) { sample <- simulate(fm1) fmsam <- fit(sample,emcontrol=em.control(random.start=FALSE)) SEsamples[i,] <- getpars(fmsam) }
data(SEsamples)
# standard errors
bootses <- apply(SEsamples,2,sd)
bootses[which(bootses==0)] <- NA
bootses
# compare with standard errors from finite differences
library(hmmr)
data(simplehmm)
# define the model
set.seed(214)
mod1 <- depmix(obs~1,data=simplehmm,nstates=2,
family=multinomial("identity"), respst=c(.6,0,.4,0,.2,.8), trst=runif(4), inst=c(1,0))
# fit the model
fm1 <- fit(mod1,emcontrol=em.control(random.start=FALSE))
ses <- cbind(standardError(fm1),bootses)
ses
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.