Description Usage Arguments Details Value Note Author(s) References See Also
GEV provides the link between L-moments of a sample and the three parameter
generalized extreme value distribution.
1 2 3 4 5 6 | f.GEV (x, xi, alfa, k)
F.GEV (x, xi, alfa, k)
invF.GEV (F, xi, alfa, k)
Lmom.GEV (xi, alfa, k)
par.GEV (lambda1, lambda2, tau3)
rand.GEV (numerosita, xi, alfa, k)
|
x |
vector of quantiles |
xi |
vector of GEV location parameters |
alfa |
vector of GEV scale parameters |
k |
vector of GEV shape parameters |
F |
vector of probabilities |
lambda1 |
vector of sample means |
lambda2 |
vector of L-variances |
tau3 |
vector of L-CA (or L-skewness) |
numerosita |
numeric value indicating the length of the vector to be generated |
See http://en.wikipedia.org/wiki/Generalized_extreme_value_distribution for an introduction to the GEV distribution.
Definition
Parameters (3): ξ (location), α (scale), k (shape).
Range of x: -∞ < x ≤ ξ + α / k if k>0; -∞ < x < ∞ if k=0; ξ + α / k ≤ x < ∞ if k<0.
Probability density function:
f(x) = α^{-1} e^{-(1-k)y - e^{-y}}
where y = -k^{-1}\log\{1 - k(x - ξ)/α\} if k \ne 0, y = (x-ξ)/α if k=0.
Cumulative distribution function:
F(x) = e^{-e^{-y}}
Quantile function: x(F) = ξ + α[1-(-\log F)^k]/k if k \ne 0, x(F) = ξ - α \log(-\log F) if k=0.
k=0 is the Gumbel distribution; k=1 is the reverse exponential distribution.
L-moments
L-moments are defined for k>-1.
λ_1 = ξ + α[1 - Γ (1+k)]/k
λ_2 = α (1-2^{-k}) Γ (1+k)]/k
τ_3 = 2(1-3^{-k})/(1-2^{-k})-3
τ_4 = [5(1-4^{-k})-10(1-3^{-k})+6(1-2^{-k})]/(1-2^{-k})
Here Γ denote the gamma function
Γ (x) = \int_0^{∞} t^{x-1} e^{-t} dt
Parameters
To estimate k, no explicit solution is possible, but the following approximation has accurancy better than 9 \times 10^{-4} for -0.5 ≤ τ_3 ≤ 0.5:
k \approx 7.8590 c + 2.9554 c^2
where
c = \frac{2}{3+τ_3} - \frac{\log 2}{\log 3}
The other parameters are then given by
α = \frac{λ_2 k}{(1-2^{-k})Γ(1+k)}
ξ = λ_1 - α[1 - Γ(1+k)]/k
f.GEV gives the density f, F.GEV gives the distribution function F, invF.GEV gives
the quantile function x, Lmom.GEV gives the L-moments (λ_1, λ_2, τ_3, τ_4), par.GEV gives the parameters (xi, alfa, k), and rand.GEV generates random deviates.
Lmom.GEV and par.GEV accept input as vectors of equal length. In f.GEV, F.GEV, invF.GEV and rand.GEV parameters (xi, alfa, k) must be atomic.
Alberto Viglione, e-mail: alviglio@tiscali.it.
Hosking, J.R.M. and Wallis, J.R. (1997) Regional Frequency Analysis: an approach based on L-moments, Cambridge University Press, Cambridge, UK.
rnorm, runif, KAPPA, Lmoments.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.