Description Usage Arguments Details Value Note Author(s) References See Also
GUMBEL provides the link between L-moments of a sample and the two parameter
Gumbel distribution.
1 2 3 4 5 6 | f.gumb (x, xi, alfa)
F.gumb (x, xi, alfa)
invF.gumb (F, xi, alfa)
Lmom.gumb (xi, alfa)
par.gumb (lambda1, lambda2)
rand.gumb (numerosita, xi, alfa)
|
x |
vector of quantiles |
xi |
vector of gumb location parameters |
alfa |
vector of gumb scale parameters |
F |
vector of probabilities |
lambda1 |
vector of sample means |
lambda2 |
vector of L-variances |
numerosita |
numeric value indicating the length of the vector to be generated |
See http://en.wikipedia.org/wiki/Fisher-Tippett_distribution for an introduction to the Gumbel distribution.
Definition
Parameters (2): ξ (location), α (scale).
Range of x: -∞ < x < ∞.
Probability density function:
f(x) = α^{-1} \exp[-(x-ξ)/α] \exp\{- \exp[-(x-ξ)/α]\}
Cumulative distribution function:
F(x) = \exp[-\exp(-(x-ξ)/α)]
Quantile function: x(F) = ξ - α \log(-\log F).
L-moments
λ_1 = ξ + α γ
λ_2 = α \log 2
τ_3 = 0.1699 = \log(9/8)/ \log 2
τ_4 = 0.1504 = (16 \log 2 - 10 \log 3)/ \log 2
Here γ is Euler's constant, 0.5772...
Parameters
α=λ_2 / \log 2
ξ = λ_1 - γ α
f.gumb gives the density f, F.gumb gives the distribution function F, invF.gumb gives
the quantile function x, Lmom.gumb gives the L-moments (λ_1, λ_2, τ_3, τ_4)), par.gumb gives the parameters (xi, alfa), and rand.gumb generates random deviates.
Lmom.gumb and par.gumb accept input as vectors of equal length. In f.gumb, F.gumb, invF.gumb and rand.gumb parameters (xi, alfa) must be atomic.
Alberto Viglione, e-mail: alviglio@tiscali.it.
Hosking, J.R.M. and Wallis, J.R. (1997) Regional Frequency Analysis: an approach based on L-moments, Cambridge University Press, Cambridge, UK.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.