Description Usage Arguments Value Further Details Examples
View source: R/calcForecastError.R
Estimate the index accuracy with forecasting for a (progressive) series of indexes
1 2 | calcForecastError(is_obj, pred_df, return_forecasts = FALSE,
forecast_length = 1, ...)
|
is_obj |
Object of class 'hpiseries' |
pred_df |
Set of sales to be used for predictive quality of index |
return_forecasts |
default = FALSE; return the forecasted indexes |
forecast_length |
default = 1; Length of period(s) in time to forecast |
... |
Additional Arguments |
object of class 'hpiaccuracy' inheriting from class 'data.frame' containing the following fields:
Property Identification number
Transaction Price
Predicted price
(Prediction - Actual) / Actual
log(prediction) - log(actual)
Period of the prediction
Series position from which the prediction was generated
If you set 'return_forecasts' = TRUE, the forecasted indexes for each period will be returned in the 'forecasts' attribute of the 'hpiaccuracy' object. (attr(accr_obj, 'forecasts')
For now, the 'pred_df' object must be a set of repeat transactions with the class 'rt', inheriting from 'hpidata'
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | # Load example sales
data(ex_sales)
# Create Index
hed_index <- hedIndex(trans_df = ex_sales,
periodicity = 'monthly',
max_date = '2011-12-31',
adj_type = 'clip',
date = 'sale_date',
price = 'sale_price',
trans_id = 'sale_id',
prop_id = 'pinx',
estimator = 'robust',
log_dep = TRUE,
trim_model = TRUE,
max_period = 24,
dep_var = 'price',
ind_var = c('tot_sf', 'beds', 'baths'),
smooth = FALSE)
# Create Series (Suppressing messages do to small sample size of this example)
suppressMessages(
hpi_series <- createSeries(hpi_obj = hed_index,
train_period = 12))
# Create Prediction data
rt_data <- rtCreateTrans(trans_df = ex_sales,
prop_id = 'pinx',
max_date = '2011-12-31',
trans_id = 'sale_id',
price = 'sale_price',
periodicity = 'monthly',
date = 'sale_date',
min_period_dist = 12)
# Calculate forecast accuracty
fc_accr <- calcForecastError(is_obj = hpi_series,
pred_df = rt_data)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.